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Voice Conversion based on Non-negative Matrix Factorization in Noisy
Environments
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Abstract— This paper presents a voice conversion (VC) tech-
nique for noisy environments. We prepared parallel exemplars
(dictionary) that consist of the source and target exemplars,
which have the same texts uttered by the source and target
speakers. The input source signal is decomposed into the source
exemplars, noise exemplars obtained from the input signal,
and their weights (activities). Then, the converted signal is
obtained by calculating the linear combination of the target
exemplars and the weights which are calculated using the source
exemplars. In the proposed method, a Gaussian Mixture Model
(GMM) -based conversion method is also applied to the feature
vectors generated by the sparse coding in order to compensate a
mismatch between the weights of source and target exemplars.
The effectiveness of this method was confirmed by comparing
its effectiveness with that of a conventional method.

I. INTRODUCTION

Voice conversion (VC) is a technique for changing specific
information in an input speech while maintaining the other
information in the utterance, such as its linguistic infor-
mation. The VC techniques have been applied to various
tasks, such as speaker conversion, emotion conversion [1],
[2], speaking assistance [3], and so on.

Many statistical approaches to VC have been studied [4]-
[6]. Among these approaches, the GMM-based mapping
approach [6] is widely used, and a number of improvements
have been proposed. Toda et al. [7] introduced dynamic
features and the global variance (GV) of the converted
spectra over a time sequence. Helander et al. [8] proposed
transforms based on Partial Least Squares (PLS) in order
to prevent the over-fitting problem of standard multivariate
regression. There have also been approaches that do not
require parallel data that make use of GMM adaptation
techniques [9] or eigen-voice GMM (EV-GMM) [10], [11].

However, the effectiveness of these approaches was con-
firmed with clean speech data, and the utilization in noisy
environments was not considered. The noise in the input
signal is not only output with the converted signal, but
may also degrade the conversion performance itself due
to unexpected mapping of source features. Hence, a VC
technique that takes into consideration the effect of noise
is of interest.

Recently, approaches based on sparse representations have
gained interest in a broad range of signal processing. In the
field of speech processing, Non-negative Matrix Factoriza-
tion (NMF) [12] is a well-known approach for source separa-

T. Fujii, R. Aihara, R. Takashima, T. Takiguchi and Y. Ariki are with
Graduate School of System Informatics, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
[fujii, aihara]@me.cs.scitec.kobe-u.ac. jp,
[ariki, takigu]l@kobe-u.ac.jp

978-1-4799-2625-1/13/$31.00 ©2013 IEEE

tion and speech enhancement [13], [14]. In these approaches,
the observed signal is represented by a linear combination of
a small number of atoms, such as the exemplar and basis of
NMF. In some approaches for source separation, the atoms
are grouped for each source, and the mixed signals are
expressed with a sparse representation of these atoms. By
using only the weights of the atoms related to the target
signal, the target signal can be reconstructed. Gemmeke et
al. [15] also proposes an exemplar-based method for noise
robust speech recognition. In that method, the observed
speech is decomposed into the speech atoms, noise atoms,
and their weights. Then the weights of the speech atoms are
used as phonetic scores instead of the likelihoods of Hidden
Markov Models for speech recognition.

In this paper, we propose an exemplar-based VC approach
for noisy source signals. The parallel exemplars (called
‘dictionary’ in this paper), which consist of source exemplars
and target exemplars, are extracted from the parallel data
that were used as training data in conventional GMM-based
approaches. Also, the noise exemplars are extracted from the
before- and after-utterance sections in an observed signal.
For this reason, no training processes for the noise signal
are required. The input source signal is expressed with a
sparse representation of the source exemplars and noise
exemplars. Only the weights (called ‘activity’ in this paper)
related to the source exemplars are picked up, and the target
signal is constructed from the target exemplars and the
picked-up weights. In addition, a GMM-based conversion
method is also applied to the feature vectors generated by the
sparse coding in order to approximate to target features. The
effectiveness of this method was confirmed by comparing its
effectiveness with that of a conventional method.

II. PROPOSED METHOD
A. Voice Conversion based on Sparse Coding

In this section, we give expression to voice conversion
based on sparse coding [16]. In the approaches based on
sparse representations, the observed signal is represented by
a linear combination of a small number of atoms.

J
x;~ »_ajhj; = Ah (1)

j=1

x; is the [-th frame of the observation. a; and h;; are the
j-th atom and the weight, respectively. A = [a; ...a ] and
h; = [h1;...hyy])T are the collection of the atoms and the
stack of weights. When the weight vector h; is sparse, the
observed signal can be represented by a linear combination
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Fig. 1. Basic approach of exemplar-based voice conversion

of a small number of atoms that have non-zero weights. In
this paper, each atom denotes the exemplar of speech or of a
noise signal, and the collection of exemplar A and the weight
vector h; are referred to as the ‘dictionary’ and ‘activity’,
respectively.

In our proposed method, the parallel exemplars (dictionar-
ies) are used to map the source signal to the target one. The
parallel dictionaries consist of source and target dictionaries
that have the same size.

Fig. 1 shows the basic approach of voice conversion
based on sparse coding. The activity matrices are estimated
from source words and the source dictionary. When there
are parallel dictionaries constructed from source and target
speech features, the activity of the source signal estimated
with the source dictionary may be able to be substituted for
that of the target signal. Therefore, the target speech can be
constructed by using the target dictionary and the activity of
the source signal.

B. Dictionary Construction

The parallel dictionaries are constructed from source and
target spectral envelopes extracted by STRAIGHT analysis
[17]. The use of these features worked without any prob-
lems in a preliminary experiment using clean speech data.
However, when it came to constructing a noise dictionary,
STRAIGHT analysis could not express the noise spectrum
well since STRAIGHT itself is an analysis and synthesis
method for speech data. In order to express the noisy source
speech with a sparse representation of source and noise
dictionaries, a simple magnitude spectrum calculated by
short-time Fourier transform (STFT) is used to construct the
source and noise dictionaries.

Fig. 2 shows the process for constructing parallel dic-
tionaries. For the target training speech, the STRAIGHT
spectrum is used to extract its dictionary. For the source
training speech, on the other hand, the STRAIGHT spectrum
is converted into mel-cepstral coefficients and only used for
DP-matching in order to align the temporal fluctuation, and
the magnitude spectrum is used to extract its dictionary.
When an input source signal is converted, the source signal
is also applied to STFT and STRAIGHT analysis. The
magnitude spectrum is used to extract the noise dictionary
and used to estimate the activity. The STRAIGHT spectrum
is not used in the conversion process, but the other features
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Fig. 2. Construction of source and target dictionaries

extracted by STRAIGHT analysis, such as FO and aperiodic
components, are used to synthesize the converted signal.

C. Estimation of Activity from Noisy Source Signals

From the before- and after-utterance sections in the ob-
served (noisy) signal, the noise dictionary is extracted for
each utterance. In the exemplar-based approach, the spectrum
of the noisy source signal at frame [ is approximately
expressed by a non-negative linear combination of the source
dictionary, noise dictionary, and their activities.

x; = X +x;

J K

~ s1S niyn

2 Zajhjyl + Zakhk,l
j=1 k=1

_ san |17
- Al

= Ahl s.t.

] s.t. 5, h' >0
h; >0 (2)

x; and x}' are the magnitude spectra of the source signal
and the noise. A%, A", hj, and h}* are the source dictionary,
noise dictionary, and their activities at frame [, respectively.
Given the spectrogram, (2) can be written as follows:

HS
X ~ [A*A"] [H"} st. HYL H">0
— AH st. H>O0. 3)

In order to consider only the shape of the spectrum, X,
A® and A™ are first normalized for each frame or exemplar
so that the sum of the magnitudes over frequency bins equals
unity.

M = 1P*Px
X + X./M
A — A/APXDIQ) 4)

1 is an all-one matrix. ./ denotes element-wise division. The
joint matrix H is estimated based on NMF with the sparse

constraint that minimizes the following cost function [15]:
dX,AH) + [|[(ALPE)) «H||;, st. H>0. (5

The first term is the Kullback-Leibler (KL) divergence
between X and AH. The second term is the sparse constraint
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with the L1-norm regularization term that causes H to be
sparse. The weights of the sparsity constraints can be defined
for each exemplar by defining AT = [A\; ... A\;... Ajix]. In
this paper, the weights for source exemplars [\ ... ;] were
set to 0.2, and those for noise exemplars [Ajq1... Aj+K]
were set to 0. H minimizing (5) is estimated iteratively
applying the following update rule:

H,., = H, x(A"(X./(AH)))

/(1((J+K)><L) +)\1(1><L)) (6)

D. Target Speech Construction

From the estimated joint matrix H, the activity of source
signal H? is extracted, and by using the activity and the target
dictionary, the converted spectral features are constructed.
Then, the target dictionary is also normalized for each frame
in the same way the source dictionary was.

Al Al /(1PXP)AY) (7)

Next, the normalized target spectral feature is constructed,
and the magnitudes of the source signal calculated in (4) are
applied to the normalized target spectral feature.

X! = (A'H®). x M (8)

The input source feature is the magnitude spectrum calcu-
lated by STFT, but the converted spectral feature is expressed
as a STRAIGHT spectrum. Hence, the target speech is
synthesized using a STRAIGHT synthesizer. Then, FO infor-
mation is converted using a conventional linear regression
based on the mean and standard deviation.

E. Compensation of a Mismatch between the Weights of
Source and Target Exemplars Based on GMM

Although source and target dictionaries are consisted of
parallel data, a mismatch may occur in the estimated weights
of source and target exemplars. In order to compensate the
mismatch, in this paper, GMM-based conversion is applied
to the feature vectors generated by the sparse coding. In
the compensation process, as shown in Fig. 3, the spectra
converted by the sparse coding and the target speech data
are converted to the cepstrum domain, and they are used as
training data of GMM. Training of GMM is performed by
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the same procedure as the conventional VC based on GMM

[6].
ITII. EXPERIMENTS

In the experiments, noise-added speech data was used as
an input signal. The proposed VC technique was evaluated
by comparing it with a conventional technique based on
GMM [6] and the VC technique based on sparse coding
without GMM-based conversion [16]. The source speaker
and target speaker were one male and one female speaker,
whose speech is stored in the ATR Japanese speech database,
respectively. The sampling rate was 8 kHz. Two-hundred
sixteen words of clean speech were used to construct parallel
dictionaries in our proposed method and used to train the
GMM in the conventional method. The number of exemplars
of source and target dictionaries was 57,033. Fifty words or
twenty-five sentences of noisy speech were used as the test
dataset. Fifty words were included in parallel dictionaries,
and twenty-five sentences were not. The noisy speech was
created by adding a noise signal recorded in a restaurant
(taken from the CENSREC-1-C database) to the clean words
or sentences. The mean SNR was about 10 dB and 15 dB.
The noise dictionary is extracted from the before- and after-
utterance sections in the evaluation sentence. The average
number of exemplars for the noise dictionary for one sen-
tence was 104. In our proposed method, a 256-dimensional
magnitude spectrum was used as the feature vector for the
input signal, source dictionary and noise dictionary, and a
512-dimensional STRAIGHT spectrum was used for the
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target dictionary. The number of iterations used to estimate
the activity was 500.

IV. EXPERIMENTAL RESULTS

Fig. 4 - 7 show the cepstrum distance between target
cepstrum and that of a signal converted using each method.
As shown in these figures, our proposed method showed
a better performance than the conventional method in both
the use of fifty words and twenty-five sentences as the test
data. In the case of fifty words (test data), a largest cepstrum
distance is shown in Fig. 4 when a GMM-based VC is used.
This might be because the noise caused unexpected mapping
in the GMM-based method. When twenty-five sentences that
were not included in parallel dictionaries were used as test
data, there was a slight improvement as compared with the
conventional method based on GMM.

V. CONCLUSIONS

In this paper, we proposed an exemplar-based VC tech-
nique for a noisy environment. This method uses parallel
exemplars (dictionaries) that consist of the source and tar-
get dictionaries. By using the source dictionary and noise
dictionary, only the weights (activity) corresponding to the
source dictionary are extracted from the noisy source. The
converted speech is constructed from the target dictionary
and the activity of the source dictionary. In a comparison
experiment, the proposed method showed better performance
than the conventional method.

However, this method requires the estimation of activity of
each atom in the dictionary, and it requires high computation
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times. Therefore, we will research ways to reduce the atoms
in the dictionary efficiently, and we will try to introduce
dynamic information, such as segment features. Also, in
our proposed method, a GMM-based conversion method is
applied to the feature vectors generated by the sparse coding
in order to compensate a mismatch between the weights of
source and target exemplars. Future work will also include
further efforts to adapt the weights of source exemplars to
that of target exemplars.
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