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Abstract
We present in this paper a noise robust voice conversion (VC)
method for a person with an articulation disorder resulting from
athetoid cerebral palsy. The movements of such speakers are
limited by their athetoid symptoms, and their consonants are
often unstable or unclear, which makes it difficult for them
to communicate. In this paper, exemplar-based spectral con-
version using Non-negative Matrix Factorization (NMF) is ap-
plied to a voice with an articulation disorder in real noisy en-
vironments. In this paper, in order to deal with background
noise, an input noisy source signal is decomposed into the clean
source exemplars and noise exemplars by NMF. Also, to pre-
serve the speaker’s individuality, we use a combined dictionary
that was constructed from the source speaker’s vowels and tar-
get speaker’s consonants. The effectiveness of this method was
confirmed by comparing its effectiveness with that of a conven-
tional Gaussian Mixture Model (GMM)-based method.
Index Terms: Voice Conversion, NMF, Articulation Disorders,
Noise Robustness, Assistive Technologies

1. Introduction
There are 34,000 people with speech impediments associated
with an articulation disorder in Japan alone. One of the causes
of speech impediments is cerebral palsy. Cerebral palsy results
from damage to the central nervous system, and the damage
causes movement disorders. Three general times are given for
the onset of the disorder: before birth, at the time of delivery,
and after birth. Cerebral palsy is classified into the following
types: 1) spastic, 2) athetoid, 3) ataxic, 4) atonic, 5) rigid, and a
mixture of these types [1].

In this study, we focused on a person with an articula-
tion disorder resulting from the athetoid type of cerebral palsy.
Athetoid symptoms develop in about 10-15% of cerebral palsy
sufferers. In the case of a person with this type of articulation
disorder, his/her movements are sometimes more unstable than
usual. That means, in cases where movements are related to
speaking, their utterances (especially their consonants) are of-
ten unstable or unclear due to the athetoid symptoms. Veaux et
al. used HMM-based speech synthesis to reconstruct the voice
of individuals with degenerative speech disorders [2]. However,
because athetoid symptoms also restrict the movement of the
sufferer’s arms and legs, it is difficult for them to input text in-
formation to synthesize their voice. Most people suffering from
athetoid cerebral palsy cannot communicate by sign language
or writing for the same reason, so there is great need for voice
conversion (VC) system for them.

In this paper, we propose a VC method for articulation dis-
orders. Our VC method has the following two benefits. The first

benefit is the noise robustness. When we use a VC system in a
real environment, background noise is an unavoidable problem.
Input noise may degrade the VC performance due to unexpected
mapping in the features. Our proposed method includes a noise
separation system in VC that enables the VC method to work
effectively in noisy environments. The second benefit is to pre-
serve the individuality of the source speakers voice. People with
articulation disorders wish to communicate by their own voice
if they can. By using an individuality-preserving dictionary, we
convert their voice into a well-ordered voice preserving their
voice individuality.

A GMM-based approach is widely used for VC because
of its flexibility and good performance [3]. This approach has
been applied to various tasks, such as speaker conversion [4],
emotion conversion [5, 6], speaking assistance [7], and so on.
The conversion function is interpreted as the expectation value
of the target spectral envelope. The conversion parameters are
evaluated using Minimum Mean-Square Error (MMSE) using a
parallel training set. If the person with an articulation disorder
is set as a source speaker and a physically unimpaired person
is set as a target speaker, an articulation-disordered voice may
be converted into a well-ordered voice. However, because the
GMM-based approach has been developed mainly for speaker
conversion [4], the source speaker’s voice individuality is also
converted into the target speaker’s individuality. Furthermore,
the effectiveness of these approaches was confirmed with clean
speech data, and the utilization in noisy environments was not
considered.

In the research discussed in this paper, we conducted VC
for articulation disorders using Non-negative Matrix Factoriza-
tion (NMF) [8]. NMF is a well-known approach for source
separation and speech enhancement. In these approaches, the
observed signal is represented by a linear combination of a
small number of elementary vectors, referred to as the basis,
and its weights. In some approaches for source separation, the
bases are grouped for each source, and the mixed signals are
expressed with a sparse representation of these bases. By us-
ing only the weights of the bases related to the target signal,
the target signal can be reconstructed. Gemmeke et al. pro-
poses an exemplar-based method for noise robust speech recog-
nition [9]. In that method, the observed speech is decomposed
into the speech bases, noise bases, and their weights. Then the
weights of the speech bases are used as phonetic scores instead
of the likelihoods of Hidden Markov Model for speech recogni-
tion.

In our study, we adopt the supervised NMF approach [10],
with a focus on VC from poorly articulated noisy speech result-
ing from articulation disorders into well-ordered clean articula-
tion. The parallel exemplars (called the ‘dictionary’ in this pa-
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per), which consist of a articulation-disordered exemplars and
a well-ordered exemplars, are extracted from the parallel data.
Also, the noise exemplars are extracted from the before and af-
ter utterance sections in an observed signal. An input noisy
spectrum with an articulation disorder is represented by a lin-
ear combination of clean articulation-disordered exemplars and
noise exemplars using NMF. Only the weights (called ‘activ-
ity’ in this paper) related to the clean exemplars are picked up,
and by replacing an articulation-disordered basis with a well-
ordered basis, the original speech spectrum is replaced with
a well-ordered spectrum. Moreover, in the voice of a person
with an articulation disorder, their consonants are often unsta-
ble and that makes their voices unclear. Hence, by replacing the
articulation-disordered basis of consonants only, a voice with
an articulation disorder is converted into a clear voice that pre-
serves the individuality of speaker’s voice.

The rest of this paper is organized as follows: In Section 2,
NMF-based VC is described, the experimental data is evaluated
in Section 3, and the final section is devoted to our conclusions.

2. Voice Conversion Based on NMF
2.1. Basic approach of Exemplar-Based Voice Conversion

In the approaches based on sparse representations, the observed
signal is represented by a linear combination of a small number
of bases.

xl ≈
J∑

j=1

ajhj,l = Ahl (1)

xl is the l-th frame of the observation. aj and hj,l are the j-th
basis and the weight, respectively. A = [a1 . . . aJ ] and hl =
[h1,l . . . hJ,l]

T are the collection of the bases and the stack of
weights. When the weight vector hl is sparse, the observed
signal can be represented by a linear combination of a small
number of bases that have non-zero weights. In this paper, each
basis denotes the exemplar of the speech or noise signal, and the
collection of exemplar A and the weight vector hl are called
‘dictionary’ and ‘activity’, respectively.

Fig. 1 shows the basic approach of our exemplar-based VC
using NMF. D, d, L, and J represent the number of dimen-
sions of source features, dimensions of target features, frames
of the dictionary, and basis of the dictionary, respectively. Our
VC method needs two dictionaries that are phonemically paral-
lel. One dictionary is a source dictionary, which is constructed
from source features. Source features are constructed from an
articulation-disordered spectrum and its segment features. The
other dictionary is a target dictionary, which is constructed from
target features. Target features are mainly constructed from a
well-ordered spectrum. These two dictionaries consist of the
same words and are aligned with dynamic time warping (DTW).
Hence, these dictionaries have the same number of bases.

Input source features Xs, which consist of an articulation-
disordered spectrum and its segment features, are decomposed
into a linear combination of bases from the source dictionary As

by NMF. The weights of the bases are estimated as an activity
Hs. Therefore, the activity includes the weight information of
input features for each basis.

Then, the activity is multiplied by a target dictionary in or-
der to obtain converted spectral features X̂t which are repre-
sented by a linear combination of bases from the target dic-
tionary. Because the source and target dictionary are parallel
phonemically, the bases used in the converted features is phone-
mically the same as that of the source features.

Fig. 2 shows an example of the activity matrices estimated
from a word “ikioi” (“vigor” in English). One is uttered by
a person with an articulation disorder, and the other is uttered
by a physically unimpaired person. To show an intelligible ex-
ample, each dictionary was structured from just the one word
“ikioi” and aligned with DTW. As shown in Fig. 2, these ac-
tivities have high energies at similar elements. For this reason,
when there are parallel dictionaries, the activity of the source
features estimated with the source dictionary may be able to be
substituted with that of the target features. Therefore, the target
speech can be constructed using the target dictionary and the
activity of the source signal as shown in Fig. 1.

Figure 1: Basic approach of NMF-based voice conversion
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Figure 2: Activity matrices for the articulation-disordered utter-
ance (left) and well-ordered utterance (right)

2.2. Constructing the Individuality-Preserving Dictionary

In the preceding section, both dictionaries (source and target)
consisted of the same spectral envelope features extracted by
STRAIGHT analysis [11] for simplicity in explaining the pro-
posed method. Indeed, the use of these features worked with-
out any problems in a preliminary experiment using speech
data. However, when it came to constructing a noise dictionary,
STRAIGHT analysis could not express the noise spectrum well
since STRAIGHT itself is an analysis and synthesis method for
speech data. In order to express the noisy source speech with
a sparse representation of clean source and noise dictionaries,
a simple magnitude spectrum calculated by short-time Fourier
transform (STFT) is used to construct the source and noise dic-
tionaries.
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In order to make a parallel dictionary, some pairs of paral-
lel utterances are needed, where each pair consists of the same
text. One is spoken by a person with an articulation disorder
(source speaker), and the other is spoken by a physically unim-
paired person (target speaker). The left side of Fig. 3 shows the
process for constructing a parallel dictionary. The magnitude
spectrum is calculated from the clean source utterance to con-
struct source dictionary. For the target dictionary, STRAIGHT
spectrum is extracted from clean parallel utterances. The ex-
tracted magnitude spectrum and spectrum envelopes are phone-
mically aligned with DTW. In order to estimate the activities of
the source features precisely, segment features, which consist
of some consecutive frames, are constructed. Target features
are constructed from consonant frames of the target’s aligned
spectrum and vowel frames of the source’s aligned spectrum.
Source and target dictionaries are constructed by lining up each
of the features extracted from parallel utterances.

The right side of Fig. 3 shows how to preserve a source
speaker’s voice individuality in our VC method. K represents
the number of noise dictionary frames. The vowels of a per-
son’s voice strongly imply a speaker’s individuality. On the
other hand, the consonants of people with articulation disorders
are often unstable. By combining a source speaker’s vowels and
target speaker’s consonants in the target dictionary, the individ-
uality of the source speaker’s voice can be preserved.

2.3. Estimation of Activity from Noisy Source Signal

From the before- and after-utterance sections in the observed
(noisy) signal, the noise dictionary is extracted for each ut-
terance. In the exemplar-based approach, the spectrum of the
noisy source signal at frame l is approximately expressed by a
non-negative linear combination of the source dictionary, noise
dictionary, and their activities.

xl = xs
l + xn

l

≈
J∑

j=1

as
jh

s
j,l +

K∑
k=1

an
kh

n
k,l

= [AsAn]

[
hs
l

hn
l

]
s.t. hs

l ,h
n
l ≥ 0

= Ahl s.t. hl ≥ 0 (2)

xs
l and xn

l are the magnitude spectra of the source signal and
the noise. As, An, hs

l , hn
l are the source dictionary, noise dic-

tionary, and their activities at frame l. Given the spectrogram,
(2) can be written as follows:

X ≈ [AsAn]

[
Hs

Hn

]
s.t. Hs,Hn ≥ 0

= AH s.t. H ≥ 0. (3)

In order to consider only the shape of the spectrum, X , As

and An are first normalized for each frame or exemplar so that
the sum of the magnitudes over frequency bins equals unity.

M = 1(D×D)X

X ← X./M

A ← A./(1(D×D)A) (4)

1 is an all-one matrix and ./ denotes element-wise division, re-
spectively. The joint matrix H is estimated based on NMF with
the sparse constraint that minimizes the following cost function
[9]:

d(X,AH) + ||(λ1(1×L)). ∗H||1 s.t. H ≥ 0. (5)

The first term is the Kullback-Leibler (KL) divergence between
X and AH. The second term is the sparse constraint with the
L1-norm regularization term that causes H to be sparse. .∗
denotes element-wise multiplication. The weights of the spar-
sity constraints can be defined for each exemplar by defining
λT = [λ1 . . . λJ . . . λJ+K ]. In this paper, the weights for
source exemplars [λ1 . . . λJ ] were set to 1, and those for noise
exemplars [λJ+1 . . . λJ+K ] were set to 0. H minimizing (5) is
estimated iteratively applying the following update rule:

Hn+1 = Hn. ∗ (AT (X./(AH)))

./(1((J+K)×L) + λ1(1×L)). (6)

2.4. Target Speech Construction

From the estimated joint matrix H, the activity of source signal
Hs is extracted, and by using the activity and the target dictio-
nary, the converted spectral features are constructed. Then, the
target dictionary is also normalized for each frame in the same
way the source dictionary was.

At ← At./(1(d×d)At) (7)

Next, the normalized target spectral feature is constructed, and
the magnitudes of the source signal calculated in (4) are applied
to the normalized target spectral feature.

X̂t = (AtHs). ∗M (8)

The input source feature is the magnitude spectrum calculated
by STFT, but the converted spectral feature is expressed as a
STRAIGHT spectrum. Hence, the target speech is synthesized
using a STRAIGHT synthesizer. The other features extracted
by STRAIGHT analysis, such as F0 and the aperiodic compo-
nents, are used to synthesize the converted signal without any
conversion.

3. Experimental Results
3.1. Experimental Conditions

The proposed method was evaluated on word-based VC for one
person with an articulation disorder. We recorded 432 utter-
ances (216 words, repeating each two times) included in the
ATR Japanese speech database. The speech signals were sam-
pled at 16 kHz and windowed with a 25-msec Hamming win-
dow every 10 msec. A physically unimpaired Japanese male
in the ATR Japanese speech database was chosen as a target
speaker. Two hundred sixteen utterances were used for train-
ing, and the other 216 utterances were used for the test. The
number of dimensions of source and target features are, 2565
and 513. The noisy speech was created by adding a noise sig-
nal recorded in a restaurant (taken from the CENSREC-1-C
database) to the clean speech sentences. The mean SNR was
about 20 dB. The noise dictionary is extracted from the before-
and after-utterance section in the evaluation sentence.

We compared our NMF-based VC to conventional GMM-
based VC. In GMM-based VC, the 1st through 24th cepstrum
coefficients extracted by STRAIGHT were used as source and
target features.

3.2. Subjective Evaluation

We conducted subjective evaluation on 3 topics. A total of 5
Japanese speakers performed the test using headphones. For
the “listening intelligibility” evaluation, we performed a MOS
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Figure 3: Individuality-preserving voice conversion

(Mean Opinion Score) test. The opinion score was set to a 5-
point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad).
Twenty words, which are difficult for a person with articulation
disorder to utter, were evaluated. The subjects were asked about
the listening intelligibility in the articulation-disordered voice,
the NMF-based converted voice, and the GMM-based converted
voice. Each voice uttered by a physically unimpaired person
was presented as a reference of 5 points on the MOS test.

Fifty words were converted using NMF-based VC and
GMM-based VC for the following evaluations. On the “simi-
larity” evaluation, the XAB test was carried out. In the XAB
test, each subject listened to the articulation disordered speech.
Then the subject listened to the speech converted by the two
methods and selected which sample sounded more similar to
the articulation disordered speech. On the “naturalness” eval-
uation, a paired comparison test was carried out, where each
subject listened to pairs of speech converted by the two meth-
ods and selected which sample sounded more natural.
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Figure 4: Results of MOS test on listening intelligibility

Fig. 4 shows the results of the MOS test for listening in-
telligibility. The error bars show a 95% confidence score. As
shown in Fig. 4, NMF-based VC can improve listening intelligi-
bility. On the other hand, GMM-based conversion deteriorates
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Figure 5: Preference scores for the similarity to the source
speaker and naturalness

the listening intelligibility. This might be because background
noise caused unexpected mapping in the GMM-based VC and
degraded the conversion performance.

Fig. 5 shows the preference score on the similarity to the
source speaker and naturalness of the converted voice. NMF-
based VC got a higher score than GMM-based conversion on
similarity because NMF-based conversion used a combined dic-
tionary. NMF-based VC also got a higher score than GMM-
based conversion on naturalness although NMF-based conver-
sion mixed the source speaker’s vowels and target speaker’s
consonants.

4. Conclusions
We proposed a noise robust spectral conversion method based
on NMF for a voice with an articulation disorder. Experimen-
tal results demonstrated that our VC method can improve the
listening intelligibility of words uttered by a person with an ar-
ticulation disorder in noisy environments. Moreover, compared
to conventional GMM-based VC, NMF-based VC can preserve
the individuality of the source speaker’s voice and the natural-
ness of the voice. In this study, there was only one subject per-
son, so in future experiments, we will increase the number of
subjects and further examine the effectiveness of our method.
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