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Abstract—Super-resolution technology, which restores
high-frequency information given a low-resolved image,
has attracted much attention recent years. Various super-
resolution algorithms were proposed so far: example-based
approach, sparse-coding-based, GMM (Gaussian Mixture
Model), BPLP (Back Projection for Lost Pixels), and so on.
Most of these statistical approaches rely on the training (or
just preparing) of the correspondence relationships between
low-resolved/high-resolved images. In this paper, we propose
a novel super-resolution method that is based on a statistical
model but does not require any pairs of low and high-
resolved images in the database. In our approach, Deep
Belief Bets are used to restore high-frequency information
from a low-resolved image. The idea is that only using
high-resolved images, the trained networks seek the high-
order dependencies among the observed nodes (each spatial
frequency: e.g., high and low frequencies). Experimental
results show the high performance of our proposed method.

Keywords-super-resolution; deep-learning; deep-belief-
nets; image-restoration;

I. INTRODUCTION

The resolution of the digital camera installed in a

cellular phone has dramatically improved in recent years.

On the other hand, due to price competition, the need

to reduce the cost of the image sensor has become a

serious problem, so that the technology to produce high-

resolution images using digital image processing is at-

tracting much attention. In general, low-resolution images

are enlarged by using interpolation techniques, such as

linear or bicubic interpolation. The interpolation methods,

however, decrease the resolution of the images because

their edge information is lost. For appropriate enlarging,

it is necessary to restore the high-frequency components of

the image. Such techniques are called “super-resolution”,

one of the most actively-studied topics on computer vision

in recent years. Super-resolution techniques restore the

original image from the observed image that has lost its

high-frequency components for some reason.

Super-resolution techniques are generally divided into

two approaches: example-based methods and linear re-

gression methods. Example-based methods [1], [2] simply

use pairs of low-resolution and high-resolution patches

for the reconstruction. In this approach, a low-resolved

input image is decomposed into patches, each of which is

compared with the patches in the database and replaced

with the corresponding high-resolved patch. Although this

approach produces relatively less-deteriorated images, it is

not based on any statistical models and lacks versatility.

Linear regression techniques solve the linear problem of

y = L∗x, where x, y and L are a low-resolution image, a

high-resolution image, and a degrading filter, respectively,

and ∗ denotes convolution. Generally, it is impossible to

obtain the exact high-resolved image because the filter is

not known. To approximate this filter, various approaches

have been proposed so far: a sparse-coding method [3],

[4], [5], [6], total-variation regularization [7], using eigen-

space BPLP (Back Projection for Lost Pixels) [8], a Lucy-

Richardson method [9], an MRF (Markov Random Field)

-based approach [10], [11], a GMM (Gaussian Mixture

Model) -based approach [13], a NN (Neural Networks) -

based approach [12], and so on. Some of these statistical

approaches rely on the training (or just preparing) of the

correspondence relationships between low-resolved/high-

resolved images. Therefore, if one wants to enlarge an

image with the desired scale, the relationships between

the low and high resolution with that scale need to be

trained beforehand.

Meanwhile, Hinton et el. introduced an effective train-

ing algorithm of Deep Belief Nets (DBNs) in 2006 [14],

and the use of DBNs rapidly spread in the field of

signal processing with great success. DBNs and related

models have been, for example, used for hand-written

character recognition [14], 3-D object recognition [15],

machine transliteration [16], and speech recognition tasks

[17]. DBNs are probabilistic generative models that are

composed of multiple layers of stochastic latent variables,

and have a greedy layer-wise unsupervised learning algo-

rithm. DBNs are not only used for classification tasks, but

also for the completion of an image or for collaborative

filtering. Eslami et el. adopted a type of DBNs (called

SapeBM) to complete the missing region in an image [18].

Salakhutdinov et el. used 2-layer DBNs (i.e., Restricted

Boltzmann Machines; RBMs) for collaborative filtering

[19], which has the benefit of the DBNs dealing with

missing data.

In this paper, we propose a novel super-resolution

method using DBNs to restore the missing high-

frequencies, motivated by the above-mentioned character-

istics of DBNs. In our approach, a low-resolved image

is first scaled up to the prescribed size by using bicu-

bic interpolation, and the high-frequency information is

estimated by inference of trained DBNs. The networks

are trained only using high-resolved image patches in a
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multiple-layer-wise unsupervised manner, so as to find the

deep relational connections between spatial frequencies.

Thus, we expect that the self-trained DBNs capture the

high-order dependencies of low-frequencies and high-

frequencies, and complete the high-frequency components

of a low-resolved image, assuming that the low-frequency

components are the same.

II. OVERVIEW
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Figure 1. Process of high-frequency restoration.

Generally, an interpolated low-resolved image lacks

its spatial high-frequency components. In other words,

if the high-frequency components are restored while al-

lowing the low-frequency components to remain, the im-

age is high-resolved. Therefore, it can be regarded as

a completion problem of missing data (high-frequency

components). This conceptual overview is described in

Fig. 1, showing that the high-frequency components of

each image patch are restored in the spatial frequency

domain transformed by DCT.

We also present a system overview of our pro-

posed method of super-resolution using Deep Belief Nets

(DBNs) in Fig. 2. The system has 2 phases of training

and restoring. In the training stage, each high-resolved

(HR) training image is divided into patches with the

size of P × P . Using 2-dimensional DCT, each patch

is transformed into the spatial frequency domain. These

2D-DCT coefficients are used for the training of DBNs.

In the restoring phase, a low-resolved (LR) image is

enlarged by bicubic interpolation and divided into patches

with the same size as the training data (P × P ). Each

patch is transformed to the frequency domain just like the

training phase, and fed to the trained DBNs to infer the

missing high-frequency components. We give a detailed

explanation of this restoring process in subsection III-B.

Finally, each output is brought back to the spatial domain

using the inverse of 2D-DCT in order to obtain the high-

resolved image.

III. DEEP BELIEF NETS

In this paper, we employ Deep Belief Nets (DBNs)

for capturing the co-occurrence relationships among DCT

Transform to frequency 
domain using DCT

Train DBNs

Transform to frequency 
domain using DCT

Restore high-frequency

Enlarged image (LR)Training images (HR)

Test image

High-resolved image

Interpolation
&

Partition

Training phase Restoring phase

Figure 2. System flowchart of our proposed method.
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Figure 3. The ways of connections among frequencies with 3 different
models.

coefficients based on joint probability. Once the networks

are constructed, the lost high-frequency components can

be restored based on the co-occurrence.

First, we will briefly give an explanation why we

use DBNs. High-frequency restoration based on linear

regression models, including sparse-coding, MRF, and

BPLP, has the direct connections (potentials or weights)

between low and high frequencies v (Fig. 3 (a)). On the

other hand, Restricted Boltzmann Machines (RBMs) has

no direct connections within the frequencies (visible units

v), but pairwise connections with independent hidden units

h (Fig. 3 (b)). These constraints bring non-linear higher-

order dependencies between the visible units. DBNs stack

multiple layers of RBMs to get deep architecture (Fig. 3

(c)). Therefore, it is expected that DBNs can capture

even higher-order connections between the frequencies.

Technically, each stack of RBMs in the DBNs is not a

bidirectional model except for the highest layer; however,

the architecture is approximately regarded as being a

bidirectional model in this paper.

A. Training the Networks

Let us begin with a review of the training method of

RBMs before talking about DBNs. In the literature of

RBMs, the joint probability p(v,h) of real-valued visible

units v = [v1, · · · , vI ]T , vi ∈ N (0, 1) (note that I = P 2,

and the training data should be first normalized for each di-

mension to have zero mean and unit variance) and binary-

valued hidden units h = [h1, · · · , hJ ]T , hj ∈ {0, 1} is
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defined as:

p(v, h) =
1
Z

exp(−E(v, h)) (1)

E(v, h) =
1
2
|v|2 − cT h− vT Wh (2)

Z =
∑
v,h

exp(−E(v, h)) (3)

where, W ∈ R
I×J and c ∈ R

J×1 are a weight-parameter

matrix between visible units and hidden units, and a bias

vector of hidden units, respectively.

Since there are no connections between visible units or

between hidden units, the conditional probabilities p(h|v)
and p(v|h) form simple equations as follows:

p(hj = 1|v) = σ(cj + vT W:j) (4)

p(vi|h) = N (Wi:h, 1) (5)

where W:j and Wi: denote the j-th column vector and

the i-th row vector, respectively. σ(x) indicates sigmoid

function, i.e. σ(x) = 1/(1 + exp(−x)).
For the parameter estimation, the log likelihood of visi-

ble units is used as an evaluation function. Differentiating

partially with respect to each parameter, we obtain:

∂ log p(v)
∂wij

= 〈vihj〉data − 〈vihj〉model (6)

∂ log p(v)
∂cj

= 〈hj〉data − 〈hj〉model (7)

where, 〈·〉data and 〈·〉model indicate expectations of input

data and the inner model, respectively. However, it is

generally hard to compute the second term. Typically,

expectation of the reconstructed data computed by Eqs. (4)

and (5) is alternatively used [14]. Using Eqs. (6) and

(7), each parameter can be updated by stochastic gradient

descent.

In the training of DBNs, the hidden units of the current

stack are regarded as visible units in the next layer. In

other words, the hidden units computed as a conditional

probability p(h|v) in Eq. (4) are fed to the following

RBMs, and trained in the similar way. This time, the

conditional probability p(v|h) is computed by

p(vi = 1|h) = σ(bi + Wi:h) (8)

introducing a bias vector of visible units b ∈ R
I×1,

because the visible units propagated from the previous

RBMs have binary values. This procedure is repeated

layer-by-layer until the highest layer.

B. Inferring the High-frequencies

The basic idea of the restoration of high-frequency

components using DBNs is depicted in Fig. 4. Given a

low-resolved bicubic-interpolated image, the DCT low-

frequency coefficients are first emphasized to raise the

damped parts caused by the interpolation, and fed into the

trained DBNs. Note that the high-frequency coefficients

are almost zero at this point. Starting with the upper left

of Fig. 4, the input coefficients u0 = [u0
1, · · · , u0

I ]
T are

propagated to the following layers in order by Eq. (4),

Given
low-frequency

Missing
high-frequency

Inferred
high-frequency

Figure 4. The process of high-frequency restoration using DBNs (2
hidden layers in this example).

(I) (II) (III) (IV)

Figure 5. Four input images. Only (I) is used for training, and the
others for testing.

and back-propagated by Eqs. (5) and (8). Then, we obtain

the predicted values including high-frequency components

r0 = [r1
1, · · · , r1

I ]T (lower left in Fig. 4). In our repetitive

approach, we input the obtained output vector to the DBNs

again and repeat the same procedure Q times. The output

vector uq = [uq
1, · · · , uq

I ]
T at q-th iteration (q = 1, · · · , Q)

is, in this work, given by

uq
i =

{
β · rq−1

i (i ≥ I/s)
u0

i (i < I/s)
(9)

where s and β denote the scaling size of the interpolation

and a high-frequency emphasis parameter, respectively,

and i (i = 1, · · · , I) is the index of 2D-DCT coeffi-

cients in zig-zag scan. Eq. (9) means that high-frequency

components show up gradually without changing the low-

frequency components, considering that low-frequency

components are the same even when high-resolved.

IV. EXPERIMENTS

A. Setup

For the training of Deep Belief Nets (DBNs), we used

image (I) shown in Fig. 5, whose size is 512 × 512.

We partitioned the image to have the size on a side of

P = 16 with quarterly-overlapping. Each patch (in total

15625 patches) was transformed by 2-dimensional DCT,

normalized, and then fed to DBNs. We trained DBNs with

a learning rate of 0.01 for 500 epochs, which have 2-

hidden layers, 400 hidden units for the first layer and 200

hidden units for the second layer. In order to examine

the trained DBNs, we show in Fig. 6 some examples of
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(a) Training examples (b) Bicubic (c) Proposed

Figure 6. Examples of normalized 2D-DCT coefficients.

the training data (a), bicubic-interpolated DCT coefficients

(b), and restored data from (b) using our proposed method

(c). As shown in Fig. 6 (b), while each data lacks its

high-frequency coefficients. In our approach, the lost high-

frequency components were restored. High-frequencies of

some patches were estimated incorrectly, but most of the

patches capture the overall patterns of the training patches

(for example, straight lines or dotted patterns).
For testing, 3 images (Fig. 5(II)(III)(IV)) were reduced

by half (s = 2) from 512 × 512 in the horizontal and

vertical directions, and enlarged by two times using our

proposed method. We used Q = 2 and β = 1.5 as the

parameters for the restoration, which performed best.
To evaluate the efficacy of our method, we compared

it with 2 conventional methods (sparse-coding [3] and

GMM [13]) and bicubic interpolation with 2 measures

(PSNR and SSIM [20]). Given an original image Y (high-

resolved image) and its processed image E, PSNR and

SSIM measure the quality of the processed image. The

larger the values of PSNR and SSIM are, the higher the

quality of the images is supposed to be. PSNR and SSIM

are defined as follows:

PSNR = 10 log10

2552

|E−Y|22
(10)

SSIM =
(2μEμY )(2σEY )

(μ2
E + μ2

Y )(σ2
E + σ2

Y )
(11)

where μY and μE are the averages over the images Y and

E, respectively, σY and σE are the variances of Y and E,

respectively, and σEY is the covariance of Y and E.
For reference, we also compared within our methods to

different architecture of DBNs: 1-layer, 400 hidden units

(i.e. RBMs).

B. Results and Discussion
Table I summarizes the experimental results, and Fig. 7

compares super-resolved images by bicubic interpolation,

GMM, and our proposed method. As shown in Table I,

the proposed method using DBNs performed best for

each test image with either measure. Furthermore, 2-

hidden-layer DBNs (Proposed(DBNs)) outperformed 1-

hidden-layer DBNs (Proposed(RBMs)). In Fig. 7, we can

also see that the edges are better emphasized by our

method than bicubic and GMM. The architecture of the

deep DBNs captures higher-order dependencies between

low and high frequencies better than the other methods

including shallow DBNs, and we consider that this ends

up with the preferable results.

(a) Original image (b) Bicubic

(d) Proposed(c) GMM

Figure 7. Super-resolved examples of the image (II) and (III) (in the
first and second rows, respectively) by various methods.

Table I
COMPARISON OF SUPER-RESOLUTION METHODS USING PSNR AND

SSIM.

Image Method PSNR SSIM
Bicubic 36.43 0.8816

Sparse-Coding 37.71 0.9084
(II) GMM 37.98 0.9272

Proposed(RBMs) 38.52 0.9289
Proposed(DBNs) 38.60 0.9308

Bicubic 33.07 0.8015
Sparse-Coding 34.20 0.8608

(III) GMM 35.59 0.9154
Proposed(RBMs) 35.73 0.8639
Proposed(DBNs) 37.60 0.9067

Bicubic 38.15 0.8977
Sparse-Coding 39.68 0.9240

(IV) GMM 40.83 0.9460
Proposed(RBMs) 40.40 0.9452
Proposed(DBNs) 41.31 0.9548

V. CONCLUSION

In this work, we proposed the use of Deep Belief

Nets (DBNs) to tackle super-resolution, replacing the task

with the completion problem of the missing data. In our

approach, the missing high-frequency components in a

low-resolved image are restored using self-trained DBNs

in the spatial frequency domain. In our experiments, we

showed the efficacy of the proposed method, in compar-

ison to conventional methods. Future work will include

the use of Deep Boltzmann Machines instead of DBNs to

improve the reconstruction accuracy, which have a deep

bidirectional model.
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