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ABSTRACT
As one of the techniques for robust speech recognition under
noisy environments, audio-visual speech recognition (AVSR)
using lip dynamic scene information together with audio in-
formation is attracting attention, and the research has ad-
vanced in recent years. However, in visual speech recogni-
tion (VSR), when a face turns sideways, the shape of the lip
as viewed from the camera changes and the recognition accu-
racy degrades significantly. Therefore, many of the conven-
tional VSR methods are limited to situations in which the
face is viewed from the front. This paper proposes a VSR
method to convert faces viewed from various directions into
faces that are viewed from the front using Active Appear-
ance Models (AAM). In the experiment, even when the face
direction changes about 30 degrees relative to a frontal view,
the recognition accuracy improved significantly.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Processing—
Speech recognition; I.5.4 [Pattern Recognition]: Applica-
tions—Computer vision, Signal processing

General Terms
Algorithms, Experimentation

Keywords
audio-visual, speech recognition, face direction

1. INTRODUCTION
In recent years, audio speech recognition (ASR) software

for PCs and mobile phones has become widely used and at-
tracts attention as a hands-free technology replacing the in-
put from a keyboard. However, in current ASR technologies,
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the recognition performance degrades under noisy environ-
ments, which is a significant problem in regard to making
practical use of it in speech recognition.

Human beings use a variety of information comprehen-
sively when understanding the content of an utterance. For
example, when it is hard to hear the voice, the listener pays
attention to the speaker’s lip movement and tries to under-
stand what is being said. Conversely, in the case where the
lip movement does not match with the speech, he may mis-
understand what is being said. This is called the McGurk
effect, and it indicates that phonological perception is not
decided only by audio information but also by visual infor-
mation, such as lip movement. Thus, it is important for
speech recognition to integrate lip information and audio
information.

A technology to recognize speech content from lip mo-
tion is called visual speech recognition (VSR). VSR is not
influenced by noise, whereas ASR is sensitive to noise and
its recognition rate degrades significantly under noisy envi-
ronments. Therefore, as one of the techniques for robust
speech recognition under noisy environments, audio-visual
speech recognition (AVSR), using VSR together with ASR,
is attracting attention [8].

However, in VSR, when a face turns sideways, the shape
of the lip, viewed from a camera fixed in front of the user,
changes, and the recognition accuracy degrades significantly.
Thus, many of the conventional VSR approaches are limited
to situations in which the face is viewed from the front.
Therefore, there is a great need to be able to recognize visual
speech from arbitrary face directions.

VSR locates the lip ROI (Region of Interest) and extracts
the lip features. For detection of lip ROI, traditional im-
age processing techniques, such as color segmentation [6]
and edge detection [3], were employed, along with statisti-
cal modeling techniques, such as Snakes [9], Active Shape
Models (ASM) [10] and Active Appearance Models (AAM)
[1]. For the visual features, appearance-based features, such
as PCA [11] and DCT [4], and shape-based features, such as
the width and height of the lip [12], were employed. Further-
more, a combination of both appearance and shape features,
such as AAM parameters [5] have been employed recently.

In regard to research of VSR from various face directions,
there is a method that trains the transformation matrices
from the profile view to the frontal view and transforms
the faces from side to front [7]. However, this technique re-
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quires transformation matrices in each direction. Thus, it is
difficult to recognize visual speech with arbitrary face direc-
tions. In this paper, we propose a method to extract the lip
area automatically in various face directions and to recog-
nize visual speech by converting the sideways lip figure into
a frontal one using Active Appearance Models (AAM). The
experiment results show that the proposed method provides
better performance in comparison with the conventional ap-
proaches.

2. OVERVIEW OF VISUAL SPEECH RECOG-
NITION

First, the face area is detected based on AdaBoost, using
the Haar-like features on the input image. This is because
the extraction of the feature points using AAM greatly de-
pends on the initial search area. Therefore, the extraction
accuracy of the feature points is improved by applying the
detected face area to AAM as an initial search area. After
detecting the face area, AAM is applied to the detected face
area, and the facial feature points are extracted. Then AAM
generates the model parameters most similar to the input
image. The speaker’s face direction is estimated from the
generated parameters using the method described in Section
4.2. After estimating the face direction, using the method
described in Section 4.3, a face in any direction is converted
to a frontal face (we call this operation “normalization”). Fi-
nally, the lip features are extracted, and the visual speech is
recognized using HMMs.

The lip feature employed is an AAM model parameter [5]
that includes shape information and texture information. In
this paper, AAM is applied to the whole face area in order to
estimate the face directions accurately, but the AAM model
parameters also contains information other than the lip and
its movement when whole face AAM is applied. Therefore,
after normalization of face direction, some dimensions that
include the lip information predominantly in the AAM pa-
rameters are extracted and recognized. These dimensions
are extracted, from among all the dimension combinations,
as the best combinations with the highest recognition accu-
racy of the visual speech.

In this paper, the audio signal is converted to MFCCs
(mel-frequency cepstral coefficients) that are commonly used
in a standard speech recognition system. In training, audio
and visual HMMs are independently constructed using each
feature vectors extracted from the same movie. In testing,
a final likelihood is calculated using the late integration of
likelihoods from audio HMMs and visual HMMs as follows:

LA+V = (1− α)LA + αLV , 0 ≤ α ≤ 1 (1)

where LA and LV are likelihoods of audio and visual fea-
tures, respectively. α is the combination weight.

3. ACTIVE APPEARANCE MODELS
AAM is a technique used to express a facial model using

low-dimensional parameters. The subspace is constructed
by applying PCA to shape and texture of face feature points.

The shape vector s, the feature points on the face images,
and mean shape s̄ are computed from the training image
set. The inner texture of s is normalized to mean shape.
The shape vector s and the texture vector g are given: s =
(x1, y1, ..., xn, yn)

T , g = (g1, ..., gm)T , where xi, yi (i ≤ n)
are the coordinates of the feature points. gj (j ≤ m) is

(a) Face direction = 0 (b) Face direction = φ

Figure 1: Schematic of a face viewed from the head top

the intensity value at each pixel in s̄, and mean intensity
value ḡ can be computed from the training image set. s and
g are expressed by using eigenvector matrices Ps and Pg,
obtained by applying PCA to deflection from s̄ and ḡ, as
shown in Eq. (2) and Eq. (3).

s = s̄ + Psbs (2)
g = ḡ + Pgbg (3)

bs and bg are called the shape parameter and the texture
parameter, respectively, and shape vector s and texture vec-
tor g are converted to each of them, respectively. Moreover,
bs and bg are combined and reduced as shown in Eq. (4) by
applying PCA because there is a correlation in shape and
texture.

b =

(
Wsbs

bg

)
=

(
WsP

T
s (s− s̄)

PT
g (g − ḡ)

)
= Qc (4)

where Ws is the matrix that normalizes the difference of
the unit of the shape vector and the texture vector. Q is
an eigenvector matrix. c is a vector of combined shape and
texture parameters. This parameter controls both shape
and texture. Thus, it becomes possible to treat shape and
texture together by controlling only parameter vector c.

4. NORMALIZATION OF THE FACE DIREC-
TION

A normalization method of the face direction was intro-
duced in [2], and the extended approach is proposed in this
paper, where a multiple regression model is used to estimate
the visual feature instead of a single regression. Each regres-
sion model in our method depends on a phoneme class.

4.1 Regression model
Fig. 1 shows a schematic of a face viewed from the top

of the head. Face is regarded as a sphere with radius r. A
vertical line is drawn to the image plane from the center of
the head. Then, the facial feature point at the angle α from
the vertical line is projected onto the coordinates Xa of the
image plane as shown in Fig. 1 (a). Furthermore, the facial
feature point is projected onto the image plane Xb when the
face rotates by the angle φ as shown in Fig. 1 (b). Δx, the
distance between two feature coordinate points, is expressed
as shown in Eq. (5).

Δx = xb − xa = r sin(φ+ α)− r sinα

= r sinφ cosα+ r cosφ sinα− r sinα (5)
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Figure 2: Example of conversion from directional face to
frontal face

A regression model can be derived considering r and α as
constants, as shown in Eq. (6).

c = c0 + c1 cosφ+ c2 sinφ (6)

where, c0, c1, and c2 are the regression coefficient vectors
estimated from the training data.

4.2 Estimation of the face direction
When AAM is applied to a new input image with no infor-

mation of face direction, parameter c′ is generated. Then,
the direction φ can be estimated as shown in Eq. (7) using
Eq. (6). (

cosφ
sinφ

)
= B+(c

′ − c0) (7)

where B+ is the pseudo inverse matrix of (c1 c2). There-
fore, the direction φ is estimated as shown in Eq. (8) using
cosφ and sinφ in Eq. (7).

φ = tan−1 (sinφ/ cosφ) (8)

4.3 Converting of the directional face to frontal
face

When AAM is applied to the input image, parameter c′ is
generated using AAM and face direction φ is obtained using
Eq. (8). Then, the residual vector cres is estimated as shown
in Eq. (9).

cres = c
′ − (c0 + c1 cosφ+ c2 sinφ) (9)

The directional face is expressed as shown in Eq. (10) using
Eq. (9).

cnew = c0 + c1 cos θ + c2 sin θ + cres (10)

If θ = 0, a face direction is converted to the front. Fig. 2
shows the result of the conversion from directional face to
frontal face.

4.4 Multiple regression model
In this paper, a multiple regression model of Eq. (6) is

estimated in order to decrease the variation mismatch be-
tween frontal face and directional face. The i-th regression
model is represented as follows:

ci = ci0 + ci1 cosφ+ ci2 sinφ (11)

Each regression model is estimated using the only training
data for a phoneme. In this paper, six regression models are
estimated using the training data for the Japanese vowel:
/a/, /i/, /u/, /e/, /o/ and the nasal /N/, respectively.

In the process of conversion to frontal face, first, cin is
obtained by applying AAM to the test image. Next, the face
direction θ is estimated using cin according to Eq. (8). The

Table 1: Visual recognition rates [%] without normalization
of face direction

front 15 degrees 30 degrees
c parameter 80.67 13.39 1.30

Table 2: Visual recognition rates [%] with normalization of
face direction

front 15 degrees 30 degrees
c parameter

(single regression)
78.67 54.32 42.35

c parameter
(multiple regression)

79.56 54.72 49.37

DCT 72.77 50.49 47.48

optimal regression model is selected so that the minimum
distance between ci(θ) and cin is achieved as follows.

î = argmin
i

||ci(θ)− cin|| (12)

Then, as described in Section 4.3, the face direction is con-
verted to the front.

5. EXPERIMENT

5.1 Experimental condition
Two subjects spoke ATR phoneme-balanced words (216

words)×10 sets with the frontal face, the same 216 words
×1 set with 15-degree face and 30-degree face, respectively.
Resolution was 320×240 pixels, and the frame rate was 30
fps.

The leave-one-out method was applied to 216 words×10
sets, where 216 words×9 sets with the frontal face were used
for training HMMs, the remaining one set with the frontal
face and the 216 words with the directional faces were used
for test, and the recognition rate was the average over the
10 sets. Monophone HMMs were constructed with 5 states
and 16 mixtures.

The number of AAM training images was 108, and the
number of feature points on each image was 63. As a result
of feature extraction described in Section 3, the AAM pa-
rameter for two subjects was reduced to 5 dimensions and
9 dimensions, respectively, for 95 % of the cumulative pro-
portion. Including the AAM parameter, its delta and delta-
delta parameters, were finally used as the visual features.
12-dimensional MFCC parameters, along with their delta
and delta-delta parameters, were used as the audio features.

5.2 Experimental results
Table 1 shows the recognition rates for only visual features

without normalization of face direction. “Front” indicates
the recognition rate of the frontal face. “15 degrees” and
“30 degrees” indicate the recognition rate of the 15-degree
face and the 30-degree face, respectively. As shown in Table
1, although a high recognition rate is obtained in “front”,
the recognition rates except for “front” degrade seriously.
This is because the shape of the lip viewed from the camera
changes in directional face. Therefore, the recognition rates
are affected seriously.
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Figure 3: Audio-visual recognition results at SNR of 20 dB

Figure 4: Audio-visual recognition results at SNR of 0 dB

Table 2 shows the recognition rates for only visual features
with normalization of face direction. The recognition rate of
“15 degrees” improved by about 41.3 points and the recog-
nition rate of “30 degrees” improved by about 48.1 points
compared with Table 1. Thus, it was confirmed that the
proposed method is effective for directional face, and the
performance of the multiple regression is better than that
of the single regression. However, the recognition rate of
“30 degrees” is low by about 5.35 points compared with “15
degrees”. One of the reasons is that the extraction accuracy
of the feature points using AAM degrades when the face
direction becomes large. Moreover, when converting direc-
tional faces, there is a possibility that the lip information is
collapsed slightly and the recognition rate degrades.

Table 2 also shows the comparison with the performance
of the AAM-based features with that of the conventional
2D DCT-based features. 15 low-frequency components of
the 2D DCT feature were selected, and including the DCT
parameter, its delta and delta-delta parameters, were finally
used as the visual features. As shown in Table 2, it was
confirmed that the AAM-based features are more effective
than the conventional DCT-based features.

In order to integrate the visual result with the audio re-
sult under noisy environments, the likelihoods from visual
HMMs and audio HMMs were integrated according to Eq. (1).
Fig. 3 and Fig. 4 show the audio-visual recognition results
at SNRs of 20 dB and 0 dB, respectively. The combination
weight was increased by 0.1 from 0.0 to 1.0, where the weight
0 corresponds to the audio feature only, and 1 to the visual
feature only. As shown in both figures, the recognition rate
is improved by taking the optimum value of the weight. Al-
though the recognition rate using only audio HMMs greatly

decreased in the strong noisy environment at SNR of 0 dB,
it could be improved by increasing the weight to the image.

6. CONCLUSION
We proposed the method to recognize visual speech with

face directions by converting directional faces into the frontal
faces. The experimental results showed that the recognition
rate of the directional face was improved in comparison with
that without converting the face direction. Also, it could be
confirmed that the recognition rate is improved in compar-
ison with that for the only audio feature by integrating the
visual feature and audio feature under noisy environments.
Future work will include the recognition of utterances spo-
ken by more people, expansion to continuous speech recog-
nition, recognition of speech with spontaneous tone.
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