自己縮小画像と混合ガウス分布モデルを用いた超解像

小川祐樹† 堀貴博† 滝口哲也†† 有木康雄††

†神戸大学大学院システム情報学研究科 〒657-8501 兵庫県神戸市灘区六甲台町 1-1 †† 神戸大学自然科学系先端融合研究環 〒657-8501 兵庫県神戸市灘区六甲台町 1-1

E-mail: [†]{ogawa,horitaka}@me.cs.scitec.kobe-u.ac.jp, ^{††}{takigu,ariki}@kobe-u.ac.jp

あらまし 近年,超解像技術はコンピュータビジョンの分野において活発に研究されている.本稿では,混合正規分 布 (GMM)を用いた変換関数による超解像を提案する.低解像度画像を高解像度画像に変換する変換関数を,入力画 像と入力画像の自己縮小画像を用いた混合正規分布から作成する.入力画像をその変換関数に適用することによって, 高解像度画像を得ることができる.さらに,混合正規分布だけでなく,PLS (Partial Least Squares)も用いた変換関 数による超解像も提案する.また,入力画像だけを用いているので,従来手法のように大量の学習画像を必要としな い.従来手法との比較を行った結果,提案手法 (GMM のみ, GMM+PLS) 共に,従来手法より評価値が優れ,より 鮮明な画像を作成することができ,提案手法の有効性を確認した.

キーワード 超解像,混合ガウス分布モデル,PLS 回帰分析

1. はじめに

近年,デジタルカメラや携帯電話に搭載されたカメラ の解像度は,飛躍的に向上した.その一方で,価格競争 の激化により,撮像素子や光学系のコストアップが深刻 な問題となっており,より安価な撮像系を用いて,高画 質化を図る技術が求められている.さらに,携帯電話に 代表される小型情報機器などのカメラは,デジタルカメ ラに比べると解像度が低いため,写真として保存する際 には,拡大処理を施して高解像度に変換する必要があ る.一般的な拡大処理手法の代表例である共3次内挿法 や線形補間法を用いて画像を拡大すると,画像の輪郭付 近の情報を失うため,低解像度画像となってしまう.ま た,低解像度画像から高解像度画像を求めることは,解 が無数にあり不良設定問題である.そこで本研究では, 画像を拡大する際に,適切な高周波成分を付加すること によって,より高解像度の画像を作成する方法を考える.

近年,この技術はコンピュータビジョンの分野におい て,超解像とよばれる手法として活発に研究されてい る.この超解像は、何らかの原因で失われてしまった観 測データから元データを復元する手法である.つまり、 超解像とは失われてしまった高周波成分を復元する技術 であると言うことができる.超解像の手法には、動画を 対象にする手法も存在するが本稿では、1枚画像を超解 像する手法に焦点をあてる.

2. 関連研究と提案内容

超解像技術は、大きく次の二つに分類することがで きる.

- (1) Example-based 手法
- (2) 線形回帰による手法

Example-based 手法 [2] は、画像の低解像度パッチと高 解像度パッチをペアにしてデータベースを作成しておき、 入力画像が与えられると、それを分解した低解像度パッ チとデータベースを比較し、高解像度パッチに置き換え ることで高解像度の画像を得る手法である.

線形回帰による手法は、y = Lx(y:低解像度画像 x:高解像度画像 L:劣化関数) によりモデル化し、高解像度画像 x を求める手法である. この手法は L の逆行列を求めることが困難なため、様々な方法を用いてこのモデルを解く手法である. Sparse-coding を用いた手法 [3],Total-variation 正則化を用いた手法 [11], [12], BPLP [4]を用いた手法, Lucy-Richardson [5] を用いた手法などある. また、超解像ではないが、一般的で簡単な画像の拡大手法としてバイキュービック法がある. これらの手法を, どれだけこまやかに表現できるのかという表現力を縦軸に、どれだけ強くモデル化しているのかという軸を横軸にとると、図1のように表せる.

Example-based 手法 [2] は、画像の低解像度パッチと 高解像度パッチをペアにしてデータベースを作成してお き、入力画像が与えられると、それを分解した低解像度 パッチとデータベースを比較し、高解像度パッチに置き 換えることで高解像度の画像を得る手法であり、大量の 画像データベースがあれば、効果を発揮する.従って、 表現力が強く、モデル性が低いと考えられる.

Lucy-Richardson を用いた手法[5]は、画像のぼけを 様々な方法で推定してから、事後確率を最大化する手法 なので、中心に配置する.

BPLP を用いた手法[4] は、低解像度画像から高解像 度画像を作成するモデル式を用いるが、固有空間を用い る際に情報損失が起こるので、モデル性が高く表現力が 低い位置に配置できる.

Sparse-coding を用いた手法 [3] は、Sparse-coding を 用いることにより、情報の分解、再構成を効率よく行う ことができるため、表現力が強い位置に配置できる.

Total-variation 正則化を用いた手法 [11], [12] は,ハイ パーパラメータに結果が依存しがちであり,他の手法と 組み合わせる必要があるので,モデル性と表現力が低い 位置に配置している.

バイキュービック法は、単純な拡大手法であるため、1 番左下に配置している.

本研究では、従来法では研究されていない領域、すな わち、モデル性が強く、表現力が強い手法を提案する. そのために、確率モデルとしての表現力が強い混合正規 分布 (GMM)を用いた超解像を提案する.具体的には、 学習段階では、入力画像とその縮小画像からGMMを作 成し、これをもとに低解像度画像から超解像画像を生成 する変換関数を推定する.従来手法のように大量の学習 画像を用いることなく、入力画像のみで処理を行う.推 定段階では、入力画像を変換関数に適用することで、超 解像画像を得る.本稿では、GMM だけではなく PLS (Partial Least Squares)[1]も用いて変換関数を作成し、 超解像を得る手法も提案する.

3. 混合正規分布を用いた画像変換法

混合正規分布を用いた画像変換法を説明する前に, 混 合正規分布 (GMM) について述べる.

3.1 GMM

一般に、パターンの識別に用いられる特徴量は多次元 ベクトルとなる.多次元ベクトルに対する多次元正規分 布は、次元数をn、データの特徴量ベクトルを $\mathbf{x} \in \mathbf{R}^n$ とすると次式で表される.

$$N(\mathbf{x};\mu,\Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} exp\{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)\} (1)$$

ここで $\mu \in \mathbf{R}^n$ は平均ベクトル (mean vector), $\Sigma \in$

 $\mathbf{R}^{n \times n}$ は分散共分散行列 (variance covariance matrix) と 呼ばれる正定値対称行列である.

因 Z GMM の例

正規分布は単一のピークを持つ単純な確率密度関数 (Probability Density Function, PDF)であり,複雑な分 布を表現することはできない.そこで,複雑な分布を, 複数の正規分布に対する重み付き和を用いて表現する. 正規分布を重み付きで足し合わせた確率密度関数は,混 合正規分布と呼ばれる.データの次元数を n,正規分布 の混合数を M,特徴量ベクトルを $\mathbf{x} \in \mathbf{R}^n$, i番目の分 布に属する平均ベクトルを $\mu_i \in \mathbf{R}^n$, 分散共分散行列を $\Sigma_i \in \mathbf{R}^{n \times n}$, i番目の分布の重み係数を λ_i とする.各正 規分布を $N(\mathbf{x}; \mu_i, \Sigma_i)$ とすると,GMM の出力確率 b(x)は,

$$b(x) = \sum_{i=1}^{M} \lambda_i N(\mathbf{x}; \mu_i, \Sigma_i)$$
(2)

と表すことができる.ここで、重み係数 λ_i は、

$$\sum_{i=1}^{M} \lambda_i = 1 \tag{3}$$

である.

. .

図2に、次元数2, 混合数4のGMMの例を示す. この ように、GMMは複雑な確率密度関数を表現することがで き、パラメータの推定もEMアルゴリズム (Expectation Maximization)を用いることで、比較的容易に行えるた め、広い分野で用いられている.

3.2 変換関数

次に,GMM を用いて画像を変換する方法について述 べる.元となる画像と目標となる画像の特徴量をそれぞ れ, $\boldsymbol{x} = [x_1, x_2, ..., x_n]^T$, $\boldsymbol{y} = [y_1, y_2, ..., y_n]^T$ とする. 元画像 x から目標画像 y へ変換する関数は,文献[6] に 述べられている.

$$y = F(x) = E[y|x]$$

$$= \sum_{i=1}^{M} w_i(x) [\boldsymbol{\mu}_i^y + \boldsymbol{\Sigma}_i^{yx} (\boldsymbol{\Sigma}_i^{xx})^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i^x)] \quad (4)$$

$$w_i(\boldsymbol{x}) = \frac{\alpha_i N(\boldsymbol{x}; \boldsymbol{\mu}_i^x, \boldsymbol{\Sigma}_i^{xx})}{\sum_{j=1}^{M} \alpha_j N(\boldsymbol{x}; \boldsymbol{\mu}_j^x, \boldsymbol{\Sigma}_j^{xx})} \quad (5)$$

 $\mu_i^x \geq \mu_i^y$ はそれぞれ,元画像と目標画像の分布*i*における平均ベクトルである. Σ_i^{xx} は,元画像分布*i*における共分散行列であり, Σ_i^{yx} は元画像と目標画像の分布*i*における相互共分散行列である.式(4)を用いることで,元画像を目標画像へと変換することができる.変換関数のパラメータ($\alpha_i, \mu_i^x, \mu_i^y, \Sigma_i^{xx}, \Sigma_i^{yx}$)は,結合ベクトル $z = [\mathbf{x}^T \mathbf{y}^T]^T$ の確率分布を,次式で示すような GMM で表すことで推定する.

$$P(z) = \sum_{i=1}^{M} \alpha_i N(\boldsymbol{z}; \boldsymbol{\mu}_i^z, \boldsymbol{\Sigma}_i^z)$$
(6)

 $\mu_i^z \ge \Sigma_i^z$ は、次のように表現できる.

$$\boldsymbol{\Sigma}_{i}^{z} = \begin{bmatrix} \boldsymbol{\Sigma}_{i}^{xx} & \boldsymbol{\Sigma}_{i}^{xy} \\ \boldsymbol{\Sigma}_{i}^{yx} & \boldsymbol{\Sigma}_{i}^{yy} \end{bmatrix}, \boldsymbol{\mu}_{i}^{z} = \begin{bmatrix} \boldsymbol{\mu}_{i}^{x} \\ \boldsymbol{\mu}_{i}^{y} \end{bmatrix}$$
(7)

パラメータの推定はEMアルゴリズムによって行う.

4. 提案する超解像システム

図3に提案する超解像システムの流れを示す.

学習段階では、低解像度画像から超解像度画像を作 成する変換関数を、入力画像とその縮小画像を用いた GMMにより作成する.従来手法のように大量の学習画 像を用いることなく、入力画像のみで処理を行う.

推定段階では、入力画像を変換関数に適用することで、 超解像画像を得る.

4.1 変換関数の学習

次の手順により,低解像度画像から目標画像への変換 関数を求める.

(1) 低解像度画像と高解像度画像のペアを求める.

図3左に示すように、入力画像Iを一度縮小して自己 縮小画像 I_R を得る.自己縮小画像 I_R をバイキュービッ ク法で拡大することで、入力画像の低解像度画像 I_L を 得る.これにより、入力画像の低解像度画像 I_L と高解 像度画像Iのペアを得ることが出来る.

(2) 低解像度画像の画像特徴量を求める.

低解像度画像 *I_L* に複数のハイパスフィルタ (*H*1, *H*2, *H*3, *H*4)を適用することで,高周波成分 (*I_{LH1}*, *I_{LH2}, <i>I_{LH3}*, *I_{LH4}*)を抽出する. このハイパスフィ ルタは,次のような水平,垂直方向の第1次微分成分を 抽出するフィルタと,水平,垂直方向の第2次微分成分 を抽出するフィルタである. H1 = [0, 0, 1, 0, 0, -1] $H2 = [0, 0, 1, 0, 0, -1]^T$ H3 = [1/2, 0, 0, -1, 0, 0, 1/2] $H4 = [1/2, 0, 0, -1, 0, 0, 1/2]^T$

(3) 復元する目標画像の特徴量を求める.

自己縮小画像を拡大した低解像度画像 I_L と,高解像 度画像である入力画像Iとの差分をとることで,差分画 像 I_F を得る.これは、高解像度画像が持つ高周波成分 であり、低解像度画像では失われてしまった成分である. この特徴量が、復元すべき目標画像の特徴量となる.

(4) 低解像度画像から目標画像への変換関数を求 める.

関連している低解像度の画像特徴量 I_{LH1} , I_{LH2} , I_{LH3} , I_{LH4} , と目標画像の特徴量 I_F を小さなパッチ(画像の小領域) に分解する.分解された画像特徴量は次式のように表 せる.

$$\boldsymbol{x}_{m} = [\boldsymbol{I}_{LH1m}, \boldsymbol{I}_{LH2m}, \boldsymbol{I}_{LH3m}, \boldsymbol{I}_{LH4m}]^{T}$$
(8)
$$\boldsymbol{y}_{m} = [\boldsymbol{I}_{Fm}]^{T}$$
(9)

 $m はパッチ番号である. 結合ベクトルzは、<math>x \ge y$ を結合 することで得られる. 結合ベクトルから GMM を作成し、 式 (4) に適用することで、xからyを生成するための変換 関数 y = f(x) を得る.

4.2 超解像画像の推定

次の手順により,低解像度画像から高解像度画像を生 成する.

(1) 入力画像の拡大画像を求める.

図3右に示すように、入力画像*I*をバイキュービック 法で拡大することで拡大画像*I[']* を得る. 拡大画像*I[']* に 対して,複数のハイパスフィルタを適用して,高周波成 分*I*_{LH1},*I*_{LH2},*I*_{LH3},*I*_{LH4}を得る

(2) 変換関数により目的画像を生成する.

高周波成分をパッチに分解することで、分解された画 像特徴量 x_m を得る.目標画像 I'^F (高解像度画像復元に 必要な失われた高周波成分)を得るために、拡大画像 I'_L のパッチ x_m を、式 (4) に適用して y_m を得る.

(3) 目標画像より超解像画像を求める.

拡大画像 I'_L に、復元した高周波成分 I'_F を足し合わせることで、超解像画像 I_S を得る.

5. GMM と PLS を用いた超解像

GMM による超解像変換を更に改良した手法として, PLS (Partial Least Squares)[1] と GMM を組み合わせ た手法を提案する.この手法は、本来、音声の研究分野に おいて声質変換として研究されてきた手法を超解像に利 用したものである.GMM のみで変換関数を作成すると、 過学習が起こる可能性があり、これを防ぐために PLS を

Learning of conversion function

Estimation of super-resolution

図 3 超解像画像処理方法

利用している.まず, PLS について述べた後に, PLS と GMM を用いて超解像を行う方法について述べる.

5.1 PLS(Partial Least Squares)

PLS 法は,計量化学の分野で Wold(1975) によって開 発され、その分野でよく用いられている回帰分析手法で ある. PLS 回帰はデータをそのまま使わずに潜在変数 を計算し、その潜在変数への回帰を行う点が通常の重回 帰と異なる.回帰の係数を求める際には、潜在変数と従 属変数の共分散が最大になるようにし、潜在変数が互い に無相関となるよう求めていく手法である. PLS 回帰 のアルゴリズムはいくつか提案されており、本研究では SIMPLS アルゴリズム [8] を用いる.

行列 $X = [x_1, ..., x_m, ..., x_t]$, 目標行列 Y =[y₁,.., y_m,.., y_t] を考える. x_m, y_m は行列 X, Y の要 素ベクトルである. この x_m , y_m に対して PLS 回帰を 行うと次式のようになる.

$$y_m = \beta x_m + e \tag{10}$$

 β は回帰係数であり、eは残差である.

- 次に, βを求めるアルゴリズムについて述べる.
- (1) *R*, *V*, *Q*, *T* を初期化して空の行列を用意する.
- (2) $C = XY^T$ を計算し、 $x \ge y$ の相互共分散を求

める.

(3) $C^T C$ の最大固有値に対応した固有ベクトル qを求める.

- (4) $r = Cq, t = X^t r \ge t$
- (5) tの平均を抽出する.
- (6) r = r/||t||, t = t/||t||により, r, tを正規化する.
- (7) $p = Xt, q = Yt, u = Y^T q \ge \ddagger \mathfrak{Z}.$
- (8) $v = p \ge \tau z$.

(9) 繰り返し回数 i > 1 ならば, $v = v - VV^T p$, $u = u - TT^T u$ を行う.

- (10) v = v/||v||を行い、vの正規化を行う.
- (11) $C = C vv^T C$ を行う.

(12) $r, q, v \in i$ 番目の列ベクトルとして, R, Q, Vに割り当てる.

これら (2)-(12) の処理を PLS の要素 *i* = 1, 2, ... の数だけ 繰り返す. 要素数はユーザーが決めるハイパーパラメー タである. これらの処理によって

$$\beta = RQ^T \tag{11}$$

を計算することで、βを求めることが出来る.

5.2 PLS を用いた超解像

超解像度画像を求める手順は、4. で述べた手順および

図3に示した手順と同じである.異なっているのは,変換関数が式(4)から式(10)に変わることである.

学習段階では、入力画像とその縮小画像を用いて GMM と PLS を学習し、変換関数を生成する. 従来手法のよう に大量の学習画像を用いずに、入力画像のみで処理を行 う. 学習データは低解像度画像のパッチ x_m からなる行 列 $X = [x_1, ..., x_m, ..., x_t]$ と、目標画像のパッチ y_m から なる行列 $Y = [y_1, ..., y_m, ..., y_t]$ である.

推定段階では、次のように入力画像を変換関数に適 用することで、超解像画像を得る.まず、学習データの パッチ x_m から、式(5)により、重み $w_{i,m}$ を求めること で、推定したい目標画像のパッチ $\hat{y_m}$ を、 $\hat{y_{i,m}}$ の重み付 け和で次式のように求める.

$$\hat{y}_m = \sum_{i=1}^M w_{i,m} \hat{y}_{i,m}$$
(12)

ここで、PLS 回帰を用いることにより、式 (12) は次 式のように表せる.

$$\hat{y}_m = \sum_{i=1}^M w_{i,m} \beta_i x_m + e_m$$
(13)

SIMPLS は 0 平均の分散のデータを用いる.まず,低 解像度画像のパッチ集合 $\{x_m\}$,目標画像のパッチ集合 $\{y_m\}$ の平均を求める.

$$\mu_i^x = \frac{\sum_{m=1}^T w_{i,m} x_m}{T}$$
(14)

$$\mu_y = \frac{\sum_{m=1}^{n} y_m}{T} \tag{15}$$

求めた平均を用いて,パッチ集合 {*x_m*}, {*y_m*} 共に 0 平 均化を行う.

$$\tilde{y}_m = y_m - \mu_y \tag{16}$$

$$\tilde{x}_{m} = \begin{bmatrix} w_{1,m}x_{m} - \mu_{1}^{x} \\ w_{2,m}x_{m} - \mu_{2}^{x} \\ \vdots \\ w_{M,m}x_{m} - \mu_{M}^{x} \end{bmatrix}$$
(17)

パッチ集合を0平均化することにより,式(10)を次式の ように書き直すことができる.

$$\tilde{y}_m = \beta \tilde{x}_m + e_m \tag{18}$$

$$\beta = [\beta_1, \beta_2, \dots, \beta_M] \tag{19}$$

式 (18) に対して PLS 回帰を行うことにより, β を求める. β の求め方は前節で述べた通りである.従って,目標画像のパッチ \hat{y}_m を求める変換関数は次式のように表せる.

$$\hat{y}_m = \beta \tilde{x}_m + \sum_{n=1}^M w_{i,m} \mu_i^y \tag{20}$$

$$\mu_{i}^{y} = \frac{\sum_{m=1}^{T} w_{i,m} y_{m}}{T}$$
(21)

6. 評価実験

実験で用いる入力画像を図4に示す.画像のサイズは 576x576 画素である.提案手法が様々な種類の画像に対応できるのか調べるために,入力画像として,テクス チャが複雑な画像,自然風景の画像,被写体がいる画像, 人工物の画像を用いて実験を行う.

6.1 評価方法

画像を客観的に評価する手法として様々な手法が提案 されている. MSE(Mean Square Error)や PSNR(Peak Signal to Noise Ratio)は、従来から良く用いられている 手法であるが、信号レベルの劣化度合いを計算するのみ であり、その劣化が人の視覚特性にどのような影響を与 えるかを考慮していない.そこで、人の視覚特性を考慮 した客観的評価手法として、SSIM [9]や VSNR [10] が提 案されている.

本研究では、より客観的に評価することを目的として、 複数の手法を用いて評価を行う.実験で使用する評価手 法は、PSNR、SSIM、VSNRである.

6.1.1 PSNR

PSNR(ピーク信号対雑音比)は、信号が取りうる最大 のパワーと劣化をもたらすノイズの比率を表す工学用 語である.多くの信号はダイナミックレンジが非常に広 いため、PSNR 比は通常 10 を底にした常用対数で表さ れる.

PSNR は一般的に,画像圧縮や画像復元などで使用さ れ,元画像と処理画像を用いて値を算出することで画像 の品質を評価することができる.値が高ければ高いほど, 処理画像が元画像に近い.ただし,信号レベルの劣化度 合いを計算しているだけなので,人の視覚特性を考慮し ておらず,人の評価とは一致しないことがある.

PSNR の定義として, 共に, $m \ge n$ の大きさの元画 像 I と, 何らかの処理をして得た処理画像 J があると き, MSE は次式で表せる.

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (I_{i,j} - J_{i,j})^2$$
(22)

MSE を用いて PSNR は次式で表せる.

$$PSNR = 10\log_{10}\frac{MAX^2}{MSE}$$
(23)

MAX は、画像が取りうる最大ピクセル値である. ピク セルが1サンプルあたり8ビットで表現されている場合, MAX の値は255 である.

6.1.2 SSIM [9]

SSIM について説明する.構造的類似性(Structural SIMilarity:SSIM)指数は、二つのイメージの類似性を 計測する指標である.SSIM は片方の画像が完璧な画質 と考えた場合、比較対象となる画像の品質を測定するこ とができる.1の値に近ければ近いほど、元の画像と似 ている.PNSRと比べると、SSIMの方が人間の印象と 一致しているという特徴がある.SSIMを求める式は以 下の通りである.

$$SSIM(x,y) = \frac{(2\mu_x\mu_y)(2\sigma_{xy})}{(\mu_x^2 + \mu_y^2)(\sigma_x^2 + \sigma_y^2)}$$
(24)

x, yは画像, μ_x, μ_y はx, y それぞれの全画素値の平均, σ_x^2, σ_y^2 はx, y ぞれぞれの全画素値の分散, σ_{xy} はx, yそれぞれの全画素値の共分散である. 2 枚の画像の平 均と分散が等しく, 共分散が画像の分散に等しい場合, SSIM = 1となる.

6.1.3 VSNR [10]

従来の PSNR は、単なる信号レベルの劣化量に基づい て計算されるが、VSNR はそれが人の目に届いた後に知 覚されるであろう劣化量に基づいて計算される.そのた め、その計算過程において人の視覚特性がモデル化され ている.人の視覚には次の重要な特徴がある.

(1) 画像のコントラストが大きいほど,その中の小 さな雑音を検知しにくい.

(2) 空間周波数が高い雑音ほど検知しにくい. VSNRの計算過程では,画像Iのコントラスト*C*(*I*)を計 算する仕組み,および人の目が知覚する誤差*VD*(Visual Distortion)を計算する仕組みを持つ.それらを用いて VSNR は次式のように表せる.

$$VSNR = 10\log_{10}\{\frac{C(I)}{VD}\}^2$$
(25)

C(*I*) と *VD* の導出については,文献 [10] で詳しく述べられている.

6.2 パラメータ決定のための実験

評価が最も高くなる画像のパッチサイズと混合数を 決定する.実験に用いた画像は図4の画像(c)を代表 として選び,この画像を基準にパラメータを決定する. 画像の評価手法として PSNR, SSIM, VSNR を用いた. まず,混合数を10に固定し,パッチサイズの大きさを 変更した.画像のパッチのサイズは,3x3,6x6,12x12, 18x18,24x24,30x30,36x36で実験を行った.結果を 表1に示す.

表1より, 画像のパッチサイズの大きさは, 3x3 が適切であることがわかった.次にパッチサイズを3x3 に固定した上で, 混合数を3, 6, 9, 12, 15 で実験を行った.

表1 パッチサイズの比較結果

	, , ,	- TELXIE	
パッチのサイズ	PSNR	SSIM	VSNR
3x3	38.92	0.9308	13.92
6x6	38.82	0.9293	13.92
12x12	38.55	0.9246	13.92
18x18	38.13	0.9152	13.92
24x24	37.53	0.9006	13.92
30x30	36.52	0.8711	13.90

表 2 混合数の比較結果

混合数	PSNR	SSIM	VSNR			
3	38.89	0.9305	13.92			
6	38.91	0.9309	13.92			
9	38.92	0.9308	13.92			
12	39.00	0.9315	13.93			
15	38,71	0.9295	13.92			

結果を表2に示す.

混合数を変化させてもあまり変化は見受けられなかったが,混合数 12 の時に最も高い評価値が得られたため, 混合数 12 で実験を行っている.

以上のことより, 画像のパッチサイズは 3x3, GMM の混合数は 12 で実験を行った.

6.3 比較実験

512x512 画素の画像を 1/4 の大きさにして作成した 256x256 画素の画像を縦横 2 倍に拡大し,失われた高周 波成分がどれだけ復元できたか調べる.比較した手法は 次の 5 種類である.(1)Bicubic 法,(2)Example-based 手 法 [2],(3) スパースコーディング [3],(4) 提案手法 (GMM のみ),(5) 提案手法 (GMM + PLS). グレースケールで 実験を行い,評価方法として PSNR, SSIM, VSNR を 用いた. PSNR, SSIM, VSNR の評価値は,値が高けれ ば高いほど,画像の質が高く,鮮やかであることを示し ている.処理結果の評価値を表 3,処理結果の画像の一 部を図 5~9 に示す.

評価値を見てみると,Bicubic法,スパースコーディ ングと比べて,提案手法 (GMM,GMM+PLS)が特に優 れていることが分かる.これは,提案手法 (GMM),提 案手法 (GMM+PLS)が他の手法と比べて,適切に高周 波成分を復元できることを示している.また,図5~9を 見ると,提案手法 (GMM),提案手法 (GMM+PLS)共 に,従来手法と比べて鮮やかであることがわかる.

しかし,提案手法 (GMM) と提案手法 (GMM+PLS) を比較しても明確な差を得ることができなかった.GMM のみで変換関数を作成すると,過学習が発生する可能性 があり,それを防ぐために GMM と PLS を組み合わせ た変換関数を作成したが,明確な差が得られなかった. これは,パッチサイズ 3x3 に比べて画像サイズ 512x512 が充分大きく,パラメータに対して学習データ量が充分 であったためと考えられる.

Image	Measure	PSNR	SSIM	VSNR
(a)	Bicubic	33.07	0.8015	16.20
	example-based	32.23	0.754	15.35
	Sparse-coding	34.20	0.8608	17.05
	GMM	35.57	0.9157	17.43
	GMM + PLS	36.74	0.9162	17.32
(b)	Bicubic	38.15	0.8977	17.27
	example-based	37.02	0.8682	16.71
	Sparse-coding	39.68	0.9240	17.72
	GMM	40.98	0.9476	17.89
	GMM + PLS	40.82	0.9474	17.90
(c)	Bicubic	36.43	0.8816	13.63
	example-based	35.42	0.8493	13.32
	Sparse-coding	37.71	0.9084	13.87
	GMM	39.00	0.9315	13.93
	GMM + PLS	39.50	0.9317	13.90
(d)	Bicubic	34.82	0.9097	15.19
	example-based	33.56	0.8832	14.21
	Sparse-coding	36.91	0.9454	15.75
	GMM	39.22	0.9731	15.87
	GMM + PLS	41.08	0.9730	15.76
(e)	Bicubic	32.50	0.7745	13.86
	example-based	32.03	0.7450	13.44
	Sparse-coding	33.36	0.8346	14.35
	GMM	33.97	0.8802	14.52
	GMM + PLS	33.71	0.8844	14.57

表 3 PSNR,SSIM,VSNR による画像 (a),(b),(c),(d),(e) の 比較

7. 結 論

本論文では、1 枚の画像を超解像する手法として、自 己縮小画像と混合ガウス分布モデルを用いた超解像を提 案した.従来手法との比較を行った結果、2 つの提案手 法 (GMM のみ、GMM+PLS) 共に、従来手法より評価 値が優れ、より鮮明な画像を作成することができ、提案 手法の有効性を確認した.今後の課題として、パラメー タの自動推定や更に有効な変換関数の作成方法などが挙 げられる.

文 献

- Wold, H. "Soft Modeling by Latent Variables, the Nonlinear Iterative Partial Least Squares Approach," in Perspective in Probability and Statistics, Paper in Honour of M. S. Bartlett, Academic Press, 520-540, 1975.
- [2] Freeman, W.T., Jones, T.R., Pasztor, E.C., "Example-Based Super-Resolution," IEEE Computer Graphics and Applications 22(2), 56-65, 2002.
- [3] Mario A. T. Figueiredo Michael Elad and Yi Ma, "On the role of sparse and redundant representations in image processing," Proceedings of the IEEE, vol. 98, no. 6, pp. 972-982, June 2010.
- [4] 天野敏之,佐藤幸男,"固有空間法を用いた BPLP による 画像補間,"電子情報通信学会論文誌 D-II, Vol.J85-D-II, No.3, pp.457-465, 2002.
- [5] Richardson, William Hadley, "Bayesian-Based Itera-

tive Method of Image Restoration". JOSA 62 (1): 55-59, 1972.

- [6] Olivier Cappe Yannis Stylianou and Eric Moulines, "Statistical methods for voice quality transformation," EUROSPEECH, pp. 447-450, September 1995.
- [7] Elina Helander, Tuomas Virtanen, Jani Nurminen and Moncef Gabbouj, "Voice Conversion Using Partial Least Squares Regression," IEEE TRANSAC-TIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 5, pp.912-921, JULY 2010
- [8] S. de Jong, "SIMPLS: An alternative approach to partial least squares regression," Chemometrics Intell. Lab. Syst., vol. 18, no. 3, pp.251-263, Mar 1993.
- [9] Hamid R. Sheikh Zhou Wang and Eero P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 13, no. 4, pp. 600-612, April 2004.
- [10] Damon M. Chandler and Sheila S. Hemami, "Vsnr: A wavelet-based visual signal-to-noise ratio for natural images," IEEE TRANSACTIONS ON IMAGE PRO-CESSING, vol. 16, no. 9, pp. 2284-2298, September 2007.
- [11] 齊藤 隆弘, "(第2回) サンプリング定理の壁を打ち破る:1 枚の画像からの超解像度オーバーサンプリング (次世代ディジタルカメラ/ディジタルムービーを予測する)(2),"映像情報メディア学会誌:映像情報メディア 62(2), 181-189, 2008-02-01
- [12] 桜井 優,吉川 明博,鈴木 彰太郎,後藤 富朗,平野 智, "Total Variation 正則化手法と事例学習法を組合せた 超解像度画像の復元法,"映像情報メディア学会誌: 映像情報メディア = The journal of the Institute of Image Information and Television Engineers 64(11), 1613-1620, 2010-11-01

(1) Bicubic interpolation (2) Example-based

(3) Sparse-coding

画像 (a) の処理結果 図 5

(4) Proposed (GMM)

(5) Proposed (GMM+PLS)

(1) Bicubic interpolation

(2) Example-based

(3) Sparse-coding

図 6 画像 (b) の処理結果

(4) Proposed (GMM)

(5) Proposed (GMM+PLS)

(1) Bicubic interpolation

(2) Example-based

(3) Sparse-coding

画像 (c) の処理結果 図 7

(4) Proposed (GMM)

(5) Proposed (GMM+PLS)

(1) Bicubic interpolation

(2) Example-based

(3) Sparse-coding

図 8 画像 (d) の処理結果

(4) Proposed (GMM)

(5) Proposed (GMM+PLS)

(1) Bicubic interpolation

(2) Example-based

(3) Sparse-coding

図 9 画像 (e) の処理結果

(4) Proposed (GMM)

(5) Proposed (GMM+PLS)

