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Abstract—In recent years, super-resolution techniques in
the field of computer vision have been studied in earnest
owing to the potential applicability of such technology in a
variety of fields. In this paper, we propose a single-image,
super-resolution approach using a Gaussian Mixture Model
(GMM) and Partial Least Squares (PLS) regression. A GMM-
based super-resolution technique is shown to be more efficient
than previously known techniques, such as sparse-coding-based
techniques. But the GMM-based conversion may result in
overfitting. In this paper, an effective technique for preventing
overfitting, which combines PLS regression with a GMM, is
proposed. The conversion function is constructed using the
input image and its self-reduction image. The high-resolution
image is obtained by applying the conversion function to
the enlarged input image without any outside database. We
confirmed the effectiveness of this proposed method through
our experiments.
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I. INTRODUCTION

The resolution of the digital camera installed in cellular

phones has increased dramatically in recent years. On the

other hand, due to price competition, the need to reduce the

cost of the image sensor has been a serious problem. For

this reason, the technology for high-resolution digital image

processing has been attracting much attention. If images

are enlarged by using either linear interpolation or bicubic

interpolation (a popular expansion processing technique),

the resolution of the images decreases because their edge

information is lost. Therefore, a method that assures the high

resolution of the expanded images and adds an appropriate

high-frequency component to the image is required.

A considerable amount of research has been carried out

on single-image super-resolution techniques in the field of

computer vision. The typical method for single-image super-

resolution is an example-based one [1]. Association between

low- and high-resolution image patches is learned from a

database with low- and high-resolution image pairs, and it

is then applied to a new low-resolution image to restore the

most likely high-resolution component. Some studies [2][3]

also propose methods of employing a conversion function

so that low-resolution images can be converted into high-

resolution ones.

Super-resolution techniques restore the high-frequency

component of the original data that is lost for various reasons

from the observed data. In this paper, we propose a method

for restoring the high-frequency component by constructing

a conversion function that converts the low-resolution image

feature preserved in the enlarged blur image to the lost

higher-frequency component. This method was originally

developed in GMM (Gaussian Mixture Model)-based voice

conversion [4]. This voice conversion is a method that

converts a speaker’s voice into another speaker’s voice. We

applied this voice conversion to super-resolution so that

low-resolution images can be converted into high-resolution

ones [5]. The conversion function is constructed between the

original image and its self-reduction image using a GMM.

Then the conversion function is applied to the enlarged

image to restore the higher frequency component.

The GMM-based super-resolution technique may cause

overfitting to occur when a model has too many degrees of

freedom compared to the amount of training data available.

Overfitting results in poor predicting ability regarding new

data while giving very good results for the training data.

To prevent overfitting, a technique to combine partial least

squares (PLS) regression with a GMM has been proposed

for voice conversion [6]. In this paper, we propose a super-

resolution technique using a GMM and PLS regression.

This paper is structured as follows. Section II describes

GMM-based conversion. Section III describes our super-

resolution system. Section IV describes PLS-regression-

based conversion. Section V describes our experimental

results, and Section VI summarizes the paper.

II. GMM-BASED CONVERSION FUNCTION

Let the source image and the target image be expressed as

x = [x1, x2, . . . , xn]
T , y = [y1, y2, . . . , yn]

T , respectively.

The joint probability distribution of vector z = [ xT yT ]T

expressed by a GMM as follows:

P (z) =
∑M

m=1 αmN(z;μz
m,Σz

m) (1)

where αm is the weight of the m-th mixture, and M is the

number of mixtures. N(z;μz
m,Σz

m) represents the normal

distribution with mean vector μz
m and variance-covariance

matrix Σz
m. μz

m and Σz
m are expressed as follows:

Σz
m =

[
Σxx

m Σxy
m

Σyx
m Σyy

m

]
, μz

m =

[
μx

m

μy
m

]
(2)

These parameters are trained using the EM algorithm.
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Next, the conversion function from the source image into

the target one is expressed on the basis of the minimum

mean-square error as follows [4]:

y = F (x) = E[y|x]
=

∑M
m=1 wm(x)[μy

m +Σyx
m (Σxx

m )−1(x− μx
m)](3)

wm(x) =
αmN(x;μx

m,Σxx
m )∑M

j=1 αjN(x;μx
j ,Σ

xx
j )

(4)

where μx
m and μy

m represent the mean vectors at the m-th

mixture of the source image and the target image, respec-

tively. Σxx
m and Σyx

m represent the covariance matrix and the

cross-covariance matrix at the m-th mixture of the source

image and target image, respectively. The source image is

converted into the target image using Eq. (3).

III. SUPER-RESOLUTION SYSTEM

Fig. 1 shows the proposed super-resolution system. The

conversion function is constructed from the input image

and its self-reduction image using a GMM in the learning

phase. The high-resolution image is restored by using the

conversion function in the estimation phase.

A. Learning of the Conversion Function
1) A low- and high-resolution image pair (IL and I) is

prepared by reducing the high-resolution input image

I to the self-reduction image IR, and then enlarging

image IR to image IL using bicubic interpolation.

2) The high-frequency components (ILH1, ILH2, ILH3

and ILH4) are extracted from image IL as a low-

resolution image feature by applying various high-pass

filters (H1, H2, H3 and H4). The high-pass filters are

6-dimensional first-order derivatives in the horizontal

and vertical directions and 7-dimensional second-order

derivatives in the horizontal and vertical direction, as

shown below.

H1 = [0, 0, 1, 0, 0,−1]
H2 = [0, 0, 1, 0, 0,−1]T
H3 = [1/2, 0, 0,−1, 0, 0, 1/2]
H4 = [1/2, 0, 0,−1, 0, 0, 1/2]T

3) The difference image IF is produced as a high-

resolution image feature by subtracting the enlarged

image IL (low resolution) from the input image I
(high resolution).

4) The low-resolution image feature (ILH1, ILH2, ILH3,

ILH4) and the high-resolution image feature IF are

decomposed into small image patches, respectively.

Therefore, the k-th associated image patch is produced

as follows:

xk = [ITLH1k, I
T
LH2k, I

T
LH3k, I

T
LH4k]

T (5)

yk = [IFk]
T (6)

where k represents the patch index. The joint vector

z is obtained by concatenating x and y. Based on the

GMM of the joint vector, the conversion function is

constructed according to Eq. (3) in the learning phase.

B. Estimation of Super-Resolution

1) The input image I is enlarged to the image I ′L using

bicubic interpolation. High-pass filters are applied to

the enlarged input imageI ′L. The obtained images are

decomposed into patches, and a set of image patches

with the low-resolution image feature, xk, is obtained.

The lost high-resolution image feature I ′F is restored

by applying the conversion function Eq. (3) to the

image patches xk in the estimation phase.

2) Finally, the super-resolution image IS is obtained by

adding the lost high-resolution image feature I ′F to the

enlarged input image I ′L.

IV. PLS-REGRESSION-BASED CONVERSION FUNCTION

A well-known drawback of GMM-based conversion is

overfitting. It may occur when a model has too many degrees

of freedom compared to the amount of training data avail-

able. To prevent overfitting in voice conversion, a technique

that combines partial least squares (PLS) regression with a

GMM has been proposed [6].

In this paper, we propose a super-resolution technique

using a GMM and PLS regression. PLS regression gener-

ates an observed variable using a small number of latent

variables, which explains most of the variation in the target.

The regression form is given by

yk = βxk + ek (7)

where β and e represent the regression matrix and the

regression residual, respectively. Many variants exist for

solving the PLS regression problem. In this paper, the

SIMPLS (simple partial least squares) algorithm [7] is used

for obtaining the regression matrix β.

Similar to voice conversion using PLS regression [6], in

this paper, PLS regression is extended for a GMM using the

posterior probabilities in Eq. (4), and the k-th target image

patch ŷk is given as follows:

ŷk =
∑M

m=1 wm(xk) · βm · xk + ek (8)

Learning of the conversion function and estimation of

super-resolution are performed as described in Section III-A

and Section III-B, respectively, using the conversion function

of Eq. (8).

V. EXPERIMENTS

A. Quantitative Measurements

In order to evaluate impartially, various evaluation tech-

niques were employed in the super-resolution restoration

experiment, including PSNR (Peak Signal to Noise Ratio),

SSIM (Structural SIMilarity) [8] and VSNR (Visual SNR)

308299299



Figure 1. Super-resolution system

[9]. Given an original image and its processed image, PSNR,

SSIM and VSNR measure the quality of the processed

image. The larger the values of PSNR, SSIM and VSNR

are, the higher the quality of the image will be.
1) PSNR: PSNR is obtained as follows:

PSNR = 10 log10
(
2552/MSE

)
(9)

MSE =
1

mn

∑m−1
i=0

∑n−1
j=0 (Ii,j − Ji,j)

2 (10)

where Ii,j and Ji,j are the original image and the processed

image, respectively, and their size is m × n.
2) SSIM: The image similarity is obtained using SSIM

as follows:

SSIM(I, J) =
(2μIμJ)(2σIJ )

(μ2
I + μ2

J)(σ
2
I + σ2

J)
(11)

where μI and μJ are the averages over the images I and

J , respectively, σI and σJ are the variances of I and J ,

respectively, and σIJ is the covariance of I and J .
3) VSNR: VSNR is given as follows:

V SNR = 10 log10

(
C(I)

V D

)2

(12)

Figure 2. Images used in our experiments

where C(I) denotes the contrast of the original image I ,

and V D denotes the visual distortion which is described for

details in [9].

B. Experiment Results

Four images (shown in Fig. 2) were used in our experi-

ments. The original images (512 × 512) were reduced by

half in the horizontal and vertical directions, and they were

used as input images I . The input images were enlarged by

two times in the horizontal and vertical directions using the

proposed method.
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Table I
COMPARISON OF DIFFERENCE IN IMAGE QUALITY IN RELATION TO

PATCH SIZE

Patch size PSNR SSIM VSNR

3× 3 38.92 0.9308 13.92
6× 6 38.62 0.9293 13.92

12× 12 38.55 0.9246 13.92
18× 18 38.13 0.9152 13.92
24× 24 37.53 0.9006 13.92
30× 30 36.52 0.8711 13.90

Table I shows the comparison of the difference in image

quality in relation to patch size using GMM-based super

resolution, where the image (b) was used, and the number

of mixtures in Eq. (1) was 10. As shown in this table, the

3 × 3 image patch had the best value in the experiment.

Table II
COMPARISON OF DIFFERENCE IN IMAGE QUALITY IN RELATION TO THE

NUMBER OF MIXTURES

Num. of mixtures PSNR SSIM VSNR

3 38.89 0.9305 13.92
6 38.91 0.9309 13.92
9 38.92 0.9308 13.92
12 39.00 0.9315 13.93
15 38.71 0.9295 13.92

Table II shows the comparison of the difference in image

quality in relation to the number of mixtures using GMM-

based super resolution. The performance of 12 mixtures was

slightly better than that of other numbers of mixtures. The

following experiments were carried out using the 3 × 3 patch

size and 12 mixtures of GMM.

Table III shows the evaluation results using PSNR,

SSIM and VSNR. Comparing the GMM-PLS-based super-

resolution with the previously known techniques, such

as example-based super-resolution or sparse-coding-based

super-resolution, it can be seen that the GMM-PLS-based

method obtained good evaluation values. Also, the perfor-

mance of the GMM-PLS-based super-resolution was slightly

better than the GMM-based super-resolution.

VI. CONCLUSION

In this paper, a super-resolution technique was proposed

that employs GMM-PLS-based conversion using the self-

reduction image and the input image. The effectiveness of

the proposed method was confirmed through the experiments

in terms of three types of evaluation measures. Necessary fu-

ture work will include expanding the method to improve the

conversion function by employing other correlation analysis.
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Table III
COMPARISON OF THE SUPER-RESOLUTION IMAGES USING PSNR,

SSIM AND VSNR

Image Method PSNR SSIM VSNR

(a) Bicubic 33.07 0.802 16.20
Example-Based SR 32.23 0.754 15.35

Sparse-Coding 34.20 0.861 17.05
GMM-Based SR 35.57 0.916 17.43
GMM+PLS SR 36.74 0.916 17.32

(b) Bicubic 36.43 0.882 13.63
Example-Based SR 35.42 0.849 13.32

Sparse-Coding 37.71 0.908 13.87
GMM-Based SR 39.00 0.932 13.93
GMM+PLS SR 39.50 0.932 13.90

(c) Bicubic 34.82 0.910 15.19
Example-Based SR 33.56 0.883 14.21

Sparse-Coding 36.91 0.945 15.75
GMM-Based SR 39.22 0.973 15.87
GMM+PLS SR 41.08 0.973 15.76

(d) Bicubic 32.50 0.775 13.86
Example-Based SR 32.03 0.745 13.44

Sparse-Coding 33.36 0.835 14.35
GMM-Based SR 33.97 0.880 14.52
GMM+PLS SR 33.71 0.884 14.57
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