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Abstract

This paper presents a talker’s head orientation estimation
method using 2-channel microphones. In recent research, some
approaches based on a network of microphone arrays have been
proposed in order to estimate the talker’s head orientation. In
those methods, the talker’s head orientation is estimated using
the sound amplitude or peak value of CSP (Cross-power Spec-
trum Phase) coefficients obtained from each microphone array.
However, microphone array network systems need many mi-
crophone arrays to be set along the walls of a given room so
that sub-microphone arrays surround the user. In this paper, we
focus on the shape of the CSP coefficients affected by the rever-
beration, which depends on the talker’s position and the head
orientation. In our proposed method, we use not only the peak
value but also the other values of the CSP coefficients as feature
vectors, and the talker’s position and the head orientation are es-
timated by discriminating the CSP vector. The effectiveness of
this method has been confirmed by talker localization and head
orientation estimation experiments performed in a real environ-
ment.
Index Terms: microphone array, talker localization, head ori-
entation estimation, acoustic transfer function, CSP coefficients

1. Introduction
For human-human or human-computer interaction, the talker’s
location is an important cue that determines who is talking. This
information can be helpful, especially in multi-user conversa-
tion scenarios such as a meeting system, robotic communica-
tion, and so on. There have been studies for understanding of
a conversation scene based on the talker localization approach
(e.g., [1, 2]). An approach using the turn-taking information ob-
tained from DOA (Direction-of-Arrival) estimation results for
the discrimination of system requests or users’ conversations
has also been proposed [3]. For more advanced understanding
of the conversation scene, the talker’s head orientation may also
be important because it can determine not only who is talking
but also who he/she is talking to. This who-talks-to-whom in-
formation is beneficial, particularly under conditions in which
multiple users are having a conversation.

There have been many studies about sound source localiza-
tion. On the other hand, recently, head orientation estimation
from speech signals has created much interest, and some ap-
proaches have been described in [4, 5, 6, 7]. These methods use
a network of microphone arrays in order to estimate the talker’s
head orientation. The approach described in [4] is based on the
CSP algorithm, which is often used for talker localization. In
that paper, they modify the CSP function by combining it with
the weight function depending on the talker’s head orientation.
Other approaches focus on the radiation pattern of the magni-

tude for each head orientation of the talker [5]. Segura pro-
poses techniques based on both of CSP and the radiation pattern
of the magnitude and shows higher performance by combining
these approaches [6]. An approach using the DOA histogram
made from the DOA estimation results has also been proposed
[7]. However, microphone array network systems need to be
set along the walls of a given room so that sub-microphone ar-
rays surround the user, and these systems may not be suitable
in some cases due to their size. Therefore, techniques based on
one microphone array are of interest, especially in small-device-
based scenarios.

In our previous work, we focused on the fact that the char-
acteristics of the acoustic transfer function (i.e., reverberation)
depend on the position of the sound source, and we discussed
a single-channel sound source localization method based upon
the discrimination of the acoustic transfer function [8]. We also
proposed a single-channel head orientation estimation method
based on the same framework because the acoustic transfer
function may depend on not only the talker’s location but also
head orientation [9]. In this method, phoneme HMMs (Hidden
Markov Models) of clean speech are used to separate the acous-
tic transfer function from observed speech at the user’s position
and head orientation, where the separation is performed by em-
ploying an approach based upon maximum likelihood estima-
tion. Using the separated acoustic transfer function, the user’s
position and head orientation are trained with SVM (Support
Vector Machine), and for each test utterance, the user’s posi-
tion and head orientation are estimated by discriminating the
separated acoustic transfer function in the same way. However,
this method cannot separate the acoustic transfer function com-
pletely, and some phonetic components still remained as noise
components in the separated acoustic transfer function. For this
reason, it is difficult for this method to discriminate small dif-
ferences in head orientation.

In order to overcome that problem, this paper proposes a
talker’s head orientation estimation method using 2-channel mi-
crophones based on the discrimination of the CSP coefficients.
CSP analysis has been used in many studies for source localiza-
tion and head orientation estimation. However, in those studies,
only the peak value of the CSP coefficients is used because they
focus on the direct wave from the sound source. In our proposed
method, on the other hand, we focus on the shape of the CSP co-
efficients affected by the reverberation in order to characterize
the reverberation (acoustic transfer function), which depends on
the talker’s position and head orientation. Not only the peak
value but also the other values of the CSP coefficients are used
as feature vectors, and the talker’s position and the head orien-
tation are estimated by discriminating the CSP vector. Because
CSP coefficients are normalized by the power spectrum of ob-
served speech, the performance of this method may be more
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Figure 1: Experimental room environment and head orientation
of a loudspeaker for each position. Each parenthetic number
shows the index of the position of the loudspeaker.

robust against differences in the phoneme sequence uttered by
a speaker than our previous method.

Unlike the other published works, this method requires a
training process using a few observed speech utterances in ad-
vance. However, our proposed method is able to set the mi-
crophones anywhere in the given room. The effectiveness of
this method has been confirmed by talker localization and head
orientation estimation experiments performed in a real room en-
vironment.

2. Proposed Method
CSP analysis is one of the most popular methods for estimation
of sound source direction and sound source localization, and
it is also known as the Generalized Cross-Correlation PHAse
Transform (GCC-PHAT). The CSP coefficients are obtained by
applying the whitening on signals observed from two micro-
phones and calculating their cross-correlation, as shown below.

CSP (τ) = DFT−1
{

DFT (ol(t))·DFT∗(or(t))
|DFT (ol(t))|·|DFT (or(t))|

}
(1)

ol(t) andor(t) are discrete time sequences observed by the left
channel and right channel, andτ is the time-lag of these sig-
nals, respectively. In the conventional sound source localiza-
tion technique and recent head orientation estimation methods,
the talker’s location and head orientation are estimated by using
only the peak value of the CSP coefficients.

In the case of reverberant speech, the reflected waves also
cause a certain level of correlation energy in some CSP coef-
ficients other than the peak value caused by the direct wave.
For this reason, in our proposed method, all CSP coefficients
are used as the feature vector in order to deal with the char-
acteristics of the reverberation. Because CSP coefficients are
normalized by the power spectrum of observed speech, the per-
formance of this method may be more robust against differences
in the phoneme sequence uttered by a speaker than our previous
method.

First, we record some reverberant speech data uttered from
each position with each head orientation using 2-channel mi-
crophones in order to train the position and head orientation.
Next, for each training data, the CSP coefficients are calculated.
Then, the CSP coefficients are trained for each pair of the user’s
position and head orientation using SVM. For test data (any ut-
terance), the CSP coefficients are calculated, and the talker’s
position and head orientation pair is estimated by discrimina-
tion of the CSP coefficients based on SVM.
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Figure 2: Photo of the recording environment. Each number
shows the index of the position of the loudspeaker.

3. Experiments
3.1. Experiment Conditions

The proposed method was evaluated in a real room environ-
ment. Figure 1 shows the experimental room environment and
the head orientation of loudspeaker for each position. The size
of the recording room was about 7.2 m× 6.3 m× 2.8 m (width
× depth× height). The reverberation time was about 1,220
msec. One loudspeaker was set at each position with each ori-
entation, and for each position and orientation, the speech sig-
nal uttered by a male was played and recorded using two micro-
phones. The distance between the microphones was 30 cm. The
microphones were a directional type (SONY ECM-66B), and a
BOSE Mediamate II was used for the loudspeaker.

There were six positions, and each parenthetic number in
figure 1 shows the index of the position of the loudspeaker. In
the following paragraph, each position will be defined by this
index. There were eight orientations in steps of 45 degrees. The
loudspeaker’s orientation toward the microphones was defined
as 90 degrees. A total of 48 pairs (6× 8) for position and head
orientation exist. Figure 2 depicts the recording environment.
Each number shows the index of the position of the loudspeaker.

The experiment utilized the word data uttered by a male
and stored in the ATR Japanese speech database. The speech
signal was sampled at 12 kHz and windowed with a 32-msec
Hamming window every 8 msec. Then, 512 dimensional CSP
coefficients were computed for each frame, and the mean vector
was used as the feature vector of one word. For each position
and head orientation, 50 words were recorded and 10 of them
were used for testing. The other 40 words were used for training
by changing the number of training data for 1, 5, 10, 20, 30 and
40 words. The speech data for training and testing were spoken
by the same speaker but used different text utterances, respec-
tively. Changing the data set used for testing and training, the
estimation accuracy was calculated by 5-fold cross-validation.
The total number of test data was 2400 (50× 48). We used
SVM light [10] for the Support Vector Machine with the RBF
(Gaussian) kernel. Then, SVM was extended by the one-vs-rest
method in order to carry out multi-class classification. For each
test data (word), the position and head orientation of the speaker
were classified with the multi-class SVM.

3.2. Experimental Results

Table 1 shows the localization and head orientation estimation
accuracy for each number of training data. As shown in this
table, the position and head orientation were estimated with an
accuracy of more than 90 %, when the number of training data
was more than 5 words. They were also estimated with the



Table 1: Localization and head orientation estimation accuracy
for each number of training data

Number of
training data (words) 1 5 10 20 30 40

Accuracy [%] 56.2 94.0 98.4 99.7 99.9 99.9

1 dim. (peak only)

512 dim. 
401 dim. 

201 dim. 
301 dim. 

101 dim. 
51 dim. 

Figure 3: Number of dimensions and the range of the CSP co-
efficients used for the feature vector

Table 2: Head orientation accuracy [%] for each number of di-
mensions (dim.) and training data (num.)

dim. \ num. 1 5 10 20 30 40
1 (peak only) 22.0 24.3 24.5 26.3 26.8 22.5
51 72.3 70.8 78.8 95.8 93.0 93.0
101 82.5 94.5 97.5 87.8 97.5 95.5
201 91.3 92.8 96.5 99.5 99.5 99.0
301 92.5 94.0 95.8 99.3 99.3 99.5
401 92.5 98.3 95.3 99.3 99.5 99.5
512 91.8 97.8 95.5 99.5 99.5 99.5

accuracy of nearly 100 %, when the number of training data
was more than 30 words.

In our proposed method, all CSP coefficients are used for
the feature vector, while the conventional source localization
techniques and recent head orientation estimation approaches
focus on only the peak value of the CSP coefficients. We in-
vestigated what range of all the CSP coefficients works well
for discriminating the head orientation. As shown in Figure 3,
the number of dimensions of the feature vector was changed
for the case of using only the peak value, peak value with the
neighboring 50, 100, 200, 300 and 400 dimensions, and all CSP
coefficients (512 dimensions). Table 2 shows the head orien-
tation estimation accuracy for each number of dimensions and
training data. In this experiment, only the head orientation esti-
mation performance was evaluated by fixing the position of the
loudspeaker at location 2. This was an 8-class discrimination
task.

As shown in this table, the performance was improved by
adding the neighboring 50 dimensions as compared with the
case of using only the peak value. The performance improved
as the number of dimensions increased, but there was not a dras-
tic improvement when more than 200 dimensions were used.
Also, it was difficult to discriminate the head orientation when
only the peak value was used. Table 3 shows the confusion ma-
trix for the case of using only the peak value, where the number
of training data was 40. As shown in this table, test data of
90◦ were discriminated with an accuracy of more than 90 %.
However, most of test data for45◦ and135◦ were faultily dis-
criminated as90◦, which was similar to their orientations. Also
the test data of the other orientations tended to be discriminated

Table 3: Accuracy confusion matrix for the case using only the
peak value, where the number of training data was 40

Predicted
degree 0 45 90 135 180 225 270 315

0 0 0 20 0 0 60 0 20
45 0 8 74 0 0 10 0 8
90 0 0 92 0 0 2 0 6

Actual 135 0 8 60 0 0 22 0 10
180 0 0 20 0 0 60 0 20
225 0 0 20 0 0 60 0 20
270 0 0 20 0 0 60 0 20
315 0 0 20 0 0 60 0 20
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Figure 4: Mean peak value of the CSP coefficients for each head
orientation

Table 4: Localization and head orientation estimation accuracy
in noisy environments

SNR [dB] 5 10 20 clean
Accuracy [%] 2.2 3.1 47.5 99.9

as225◦. Figure 4 shows the mean peak value of the CSP coef-
ficients for each head orientation. As shown in this figure, the
CSP coefficients of45◦, 90◦ and135◦ had high peak values,
and those of the other orientations had low peak values.

These results indicate that when only the peak value was
used, the head orientations could be discriminated based only
upon the criterion that the peak value of its CSP coefficients was
high or low. The recent approaches utilize some microphone ar-
rays and estimate the talker’s head orientation by comparing the
peak values of CSP coefficients calculated by each microphone
array. However, when only a 2-channel microphone array is uti-
lized, the head orientation cannot be discriminated using only
the peak value of the CSP coefficients, and adding the other di-
mension of CSP coefficients enables it to be discriminated.

Next, we added a pink noise to speech data recorded us-
ing the 2-channel microphones, and evaluated the robustness
against the noise environment. Among recorded speech data,
only the test data had the same pink noise added so that SNR
(Signal to Noise Ratio) was 5 dB, 10 dB and 20 dB. Table 4
shows the localization and head orientation estimation accuracy
for each SNR. The number of training data was 40. As shown
in this table, the performance decreased drastically by adding
the pink noise. In the case of the SNRs for 5 dB and 10 dB, the
localization and head orientation accuracy were 2.2 % and 3.1
%, respectively, which is, more or less, the same as the expected
value obtained by discriminating the 48 classes randomly (2.1
%).

Table 5 shows the localization and head orientation estima-
tion accuracy calculated for each position of the loudspeaker,
at the SNR of 20 dB. As shown in this table, the performance



Table 5: Localization and head orientation estimation accuracy
for each loudspeaker position at 20 dB SNR

Location 1 2 3 4 5 6 mean
Accuracy [%] 61.3 18.3 59.3 60.5 24.8 61.0 47.5

Table 6: Accuracy confusion matrix for SNR of 20 dB, where
the loudspeaker position was fixed at location 2

Predicted
degree 0 45 90 135 180 225 270 315

0 4 0 96 0 0 0 0 0
45 0 2 98 0 0 0 0 0
90 0 0 100 0 0 0 0 0

Actual 135 0 0 100 0 0 0 0 0
180 0 0 98 0 2 0 0 0
225 0 0 96 0 0 4 0 0
270 0 0 98 0 0 0 2 0
315 0 0 96 0 0 0 0 4

Orientation : °0 Orientation : °90

Orientation :
with pink noise

°0

Figure 5: CSP coefficients at location 2. Upper left: head orien-
tation0◦. Upper right: head orientation90◦. Lower left: head
orientation0◦ with pink noise was added.

at locations 2 and 5, which were in front of the microphones,
were especially low. Also, we evaluated only the head orien-
tation estimation performance for the SNR of 20 dB fixing the
position of the loudspeaker at location 2. The head orientation
estimation accuracy was 14.8 %. Table 6 shows the confusion
matrix for this evaluation. As shown in this table, almost all the
test data were discriminated as90◦.

This is because the same pink noise was added to the speech
data recorded by both channels, and the CSP coefficients had a
high coefficient energy at the point where the phase delay was
0. Figure 5 shows the CSP coefficients at location 2. The fig-
ure at the upper left shows the CSP coefficients for the head
orientation of0◦, and the figure at the upper right shows those
of 90◦, where noise was not added to the test data. The figure
at the lower left shows those of noise-added data for the head
orientation of0◦.

As shown in these figures, the peak value at the middle
point of the CSP coefficients for0◦ increased due to the correla-
tion between the same noise added to the left and right channels.
As a result, these noise-added CSP coefficients were discrimi-
nated as90◦. For the case of the SNRs of 5 dB and 10 dB, the
value at the middle point increased further. Therefore, even the
speech uttered from a location other than 2 and 5, which did

not have the peak at the middle point essentially, were discrim-
inated as location 2 and with a head orientation of90◦, and this
is why the performance decreased drastically.

4. Conclusion
This paper has described a talker localization and head orien-
tation estimation method using 2-channel microphones based
on discrimination of the CSP coefficients. The characteristics
of the reverberation, which depends on the talker’s location
and head orientation, are represented by CSP coefficients. The
talker’s position and head orientation are estimated by discrim-
inating the CSP coefficients with SVM. The experiment results
in a real room environment show that our proposed method can
discriminate 6 positions and 8 head orientations with a maxi-
mum accuracy of about 99 %.

Also, the results of the comparison experiment, which used
only the peak value of the CSP coefficients, show that the use
of the dimensions near the peak value enables us to estimate
the head orientation using only 2-channel microphones, while
recent approaches need a number of microphone arrays. How-
ever, the performance decreases drastically when noise is added.
In order to overcome this problem, this system will need to be
able to discriminate the sound source as either speech or noise.
Future work will include efforts to investigate the performance
when the recording environment changes. We will also research
the estimation for unknown positions or head orientations.
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