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Abstract

One of the most crucial techniques associated with computer
vision is technology that deals with the automatic estimation
of gaze orientation. In this paper, a method is proposed to
estimate gaze orientation from images obtained from inex-
pensive cameras (such as web cameras) based on 3D active
appearance models (3D-AAM), where the 3D-AAM is used
to extract the coordinates of the feature points and the gaze
orientation. The proposed 3D-AAM method is able to esti-
mate gaze orientation using only two training 3D images. The
experimental results show that the proposed method is able to
improve gaze estimation accuracy and decrease the number of
training images required, in comparison to the conventional
method.

1. Introduction

Visual information makes up a large percentage of hu-
man perception. Therefore, gaze estimation is expected to
be applied to human interaction and human interest estima-
tion. Gaze estimation research associated with human safety
in driving has also been carried out [1]. Recently, a technique
for estimating gaze has also been used for digital signage,
in which the technology is used to determine who watches a
screen or showcase, and which portion of the screen they are
most interested in.

Many kinds of methods for estimating gaze have been pro-
posed. One approach uses a special device (such as an in-
frared camera). This approach can estimate gaze with a high
degree of accuracy, but it is necessary to install the device on
one’s head, and it is very expensive. Other approaches are es-
timating gaze by using image processing, for example, where
a 3D-eyeball model is applied to eye images [2]. In those
approaches based on image processing, it is easy to prepare
cameras and not to put a strain on the user. However, in many
approaches, the gaze estimation precision is not very high be-
cause many training data are needed. In this paper, the pro-
posed method can estimate the gaze orientation using only
two images based on 3D-AAM, where the number of training
data is less than that required by conventional methods.

2. Outline of the Proposed System

Figure 1:Experimental environment

Fig. 1 shows the experiment environment used in this pa-
per. A subject looks at each of the marks on a computer
screen, where there is no assumption for the face direction
of the subject. The 3D position of the subject’s face is cal-
culated using two webcams on the monitor in order to train
the 3D-AAM. Then, only one webcam is used to estimate the
gaze orientation in the test process.

The flow of image processing is shown in Fig.2. In the
proposed method, the facial area for the training and test im-
age is detected using AdaBoost based on Haar-like features.
Next, the feature parameters of the face and eyes are extracted
using the 3D-face-AAM on the detected facial area and the
3D-eye-AAM on the detected eye area, respectively. Finally,
the 3D-eye-AAM fitting is calculated in order to calculate the
gaze orientation.

3. Active Appearance Model

Cootes proposed an AAM to represent shape and texture
variations of an object with a low dimensional parameter
vector c [3]. Vector c can represent various facial images
with arbitrary face and gaze orientation using training images
that contain varying faces and gazes. Since an AAM is con-
structed statistically from training images, some elements of
vectorc represent the information related to the variance in
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Figure 2:Flow of image processing

Figure 3:Feature points of 2D-AAM

face and gaze orientation [4]. Therefore, this parameter vec-
tor c is employed as the feature parameter for estimating the
gaze orientation because parameter vectorc is considered to
be linearly associated with the displacement of the feature
points caused by changes in the head pose and gaze orienta-
tion.

In the AAM framework, shape vectors and texture vector
g of the face are given as follows:

s = (x1, y1, x2, y2, ..., xn, yn)
T , g = (g1, g2, ..., gm)T (1)

where the shape vectors indicates the coordinates of the fea-
ture points, and the texture vectorg indicates the gray-level
of the image within the shape. In this paper, the AAM is con-
structed using 89 shape points as shown in Fig.3.

Next, principal component analysis (PCA) is applied to the
training data, and the normal orthogonal matrices,Ps and
Pg, are obtained. Using the obtained matrices, the shape vec-
tor and the texture vector can be approximated as follows:

s = s+Psbs (2)

g = g +Pgbg (3)

wheres andg are the mean shape and mean texture of the
training images, respectively.bs andbg are the parameter
of variation from the average. Further PCA is applied to the
vectorb as follows:

b =

(
Wsbs

bg

)
=

(
WsPs

T (s− s)

Pg
T (g − g)

)
=

(
Qs

Qg

)
c (4)

whereWs is a diagonal weight matrix for each shape parame-
ter, allowing for the difference in units between the shape and
texture models.Qs andQg are the eigen matrices (including
the eigenvectors).c is a vector of parameters controlling both
the shape and gray-levels of the model. Finally, the shape and
texture are approximated as functions ofc.

s(c) = s̄+PsW
−1
s Qsc (5)

g(c) = ḡ +PgQgc (6)

Using parameterc, it is possible to control variations in
shape and texture of the AAM, but it is not possible to express
the position of the face in the image, the size of the face or
the head pose. The pose parameterp is defined as the global
posture change as follows:

p = [roll scale trans x trans y] (7)

whereroll indicates the rotation to the model plane,scale
indicates the size of the model, andtrans x andtrans y in-
dicate the translation amongx andy, respectively.

The goal of the AAM search is to minimize the error
e(p, c) on the test imageI as shown in Eq. (6) with respect
to c andp,

e(p, c) = || g(c)− I(F (p)) || (8)

whereF denotes the affine warp function, andI(F (p)) in-
dicates the affine transformed image controlled by the pose
parameterp on the test imageI. g(c) is given in Eq. (6).
Thus, we can extract the most optimizedc from the test im-
age.

4. 3D Active Appearance Model

The 3D-AAM [1, 5] is described in this section. In this
paper, the 3D-AAM is used to extract the face feature and
estimate the gaze orientation. The AAM including various
fluctuation components (images) can be constructed by using
the facial images, including various changes in the training
data (such as a left-side face image or a right-side one, and
an upturned or a downturned face, etc). Moreover, the more
training data there is, the higher the accuracy of the model.

The method for estimating the direction of the face and
gaze has been proposed in [4], where Gaussian process re-
gression is introduced in order to deal with the relation be-
tween gaze direction and the parameters obtained using 2D-
AAM, and many training images of various directions of the
face and gaze are required. However, it is no simple matter
to prepare a large number of facial images for each person
before the system is used.

An arbitrary face direction image is created by using a face
shape of three dimensions and a face texture in the front be-
cause the variation of the head pose can be expressed by a
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geometrical transformation of the 3D-AAM. Therefore, the
3D-AAM does not require much training data.

The shape parameter is expanded into 3D usingz from
stereo matching as shown in Eq. (9).

s = (x1, y1, z1, x2, y2, z2, ..., xn, yn, zn)
T (9)

The 2D pose parameter in Eq. (7) is expanded into 3D adding
yaw andpitch as shown Eq. (10).

p = [yaw pitch roll scale trans x trans y] (10)

The moving variations of these parameters are shown in
Fig. 4．

Figure 4:3D pose parameter

Using the six parameters, the 2D-AAM can be expanded
into the three dimensions, and it is able to transform the
model to all directions, angles, and positions. The transfor-
mation of the shape using this pose parameter is given as fol-
lows:

pa = Trans · Scale ·RotZ ·RotY ·RotX · pb (11)

wherepb indicates the shape coordinate before transforma-
tion. Each transformation matrix is given by Eq. (12) ∼ (16).

Trans =

(
1 0 0 trans x
0 1 0 trans y
0 0 1 0
0 0 0 1

)
(12)

Scale =

(
scale 0 0 0

0 scale 0 0
0 0 scale 0
0 0 0 1

)
(13)

RotX =

(
1 0 0 0
0 cos(α ∗ π/180) − sin(α ∗ π/180) 0
0 sin(α ∗ π/180) cos(α ∗ π/180) 0
0 0 0 1

)
(14)

RotY =

(
cos(β ∗ π/180) 0 sin(β ∗ π/180) 0

0 1 0 0
− sin(β ∗ π/180) 0 cos(β ∗ π/180) 0

0 0 0 1

)
(15)

RotZ =

(
cos(γ ∗ π/180) − sin(γ ∗ π/180) 0 0
sin(γ ∗ π/180) cos(γ ∗ π/180) 0 0

0 0 1 0
0 0 0 1

)
(16)

As the shape in 3D-AAM consists of three dimensions and
the input image consists of two dimensions, it is necessary to
project the 3D space into the 2D space when calculating the
error between the input model and the 3D model. Using the
projection functionG from the 3D space into the 2D space,
Eq. (8) is calculated as follows. Then, the optimizing param-
eter is calculated using the same approach used for 2D-AAM.

e(p, c) = || g(c)− I(G(F (p))) || (17)

5. Gaze Estimation

Figure 5:Eye-model

In order to estimate the gaze, an eye model based on the
3D-AAM is trained using the image data of the eye region
obtained from the 3D-AAM associated with the face, where
the 3D-AAMs of the face and the eye are constructed using
89 shape points as shown in Fig.3 and 16 shape points, re-
spectively. The eye model used in the proposed method is
shown in Fig.5. The eyeball is treated as a shape of an ideal
ball, and the pupil is considered to be a circle on the eyeball
as shown in Fig.5. The center of the pupil is assumed to go
through the center of the eye, and corresponding to an optical
axis of the eyeball. It is assumed that the optical axis corre-
sponds to the subject’s gaze. In Fig.5, θ indicates the rotation
in the horizontal direction, andϕ indicates the rotation in the
vertical direction. The 3D AMM of the eye is able to trans-
form the model to all directions, angles, and positions. The
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transformation of the shape is given as follows using a similar
approach to Eq. (11):

pd = Trans · Scale ·RotZ ′ ·RotY ′ ·RotX ′ · pc (18)

wherepc indicates the shape coordinate before transforma-
tion. Each transformation matrix is given by Eq. (12) ∼ (16)
when substitutingθ andϕ for yaw andpitch, respectively.
We used thescale and the diameter of the eyeball estimated
using the 3D-AMM of the face.

6. Experiments

6.1. Experiment Conditions

We recorded the gaze image data in the environment shown
in Fig. 1. One subject looks at a mark on a computer screen.
Two webcams on the monitor captured two images (with 640
× 480 pixels) for training the 3D-AAMs of the face and eye.
The distance between the center of their lenses was 100 mm.

The screen size was 375× 300 mm. The marks were
placed on the screen in 5-degree increments from the cen-
ter mark (directly in front of the subject), and the variations
of the gaze orientation were ranged horizontally from -15 de-
grees to +15 degrees and vertically from -10 degrees to +10
degrees. The total number of test data was 35. Only the left-
side camera was used for testing.

6.2. Experiment Results

The average error of the horizontal direction and the ver-
tical direction are shown in Fig.6 and Fig.7, respectively.
As shown in the two figures, the proposed method based on
the 3D-AAM results in a similar error degree when compared
with the 2D-AAM [4] which are trained using 315 image data
captured with one webcam. The experiment results also show
that the 3D-AAM decreases the degree of error when com-
pared with 2D-AAMs that are trained using 81 image data and
2 image data, respectively. As the proposed method uses only
two image data captured with two webcams, it can decrease
the number of training images compared to the conventional
method.

Figure 6:Horizontal error [degree]

Figure 7:Vertical error [degree]

7. Conclusion

In this paper, we have presented a gaze estimation method,
where the 3D-face AAM and the 3D-eye-AAM are used. It
was found that the proposed method can estimate the gaze
orientation that is independent of the direction of the face. As
a result of the experiment, we found our approach is effective
in decreasing the number of training data required in compar-
ison with the conventional method. In the near future, we will
carry out research aimed at addressing the problems associ-
ated with using an AAM on the small region of the eye and
the AAM adaptation to an unknown subject for a wide range
of gaze estimation applications.
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