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Abstract. As one of the techniques for robust speech recognition un-
der noisy environment, audio-visual speech recognition using lip dynamic
visual information together with audio information is attracting atten-
tion and the research is advanced in recent years. Since visual informa-
tion plays a great role in audio-visual speech recognition, what to select
as the visual feature becomes a significant point. This paper proposes,
for spoken word recognition, to utilize c combined parameter(combined
parameter) as the visual feature extracted by Active Appearance Model
applied to a face image including the lip area. Combined parameter con-
tains information of the coordinate value and the intensity value as the
visual feature. The recognition rate was improved by the proposed fea-
ture compared to the conventional features such as DCT and the prin-
cipal component score. Finally, we integrated the phoneme score from
audio information and the viseme score from visual information with high
accuracy.

1 Introduction

Recently, various speech recognition technologies have been put to practical
use by the development of speech recognition technologies. However, in cur-
rent speech recognition technologies, there is a problem that the recognition
performance remarkably decreases under noisy environment, and it becomes a
significant problem in aiming at the practical use of speech recognition.

Then, as one of the techniques for robust speech recognition under noisy en-
vironment, audio-visual speech recognition using lip dynamic visual information
together with audio information is attracting attention and the research is ad-
vanced in recent years.

In audio-visual speech recognition, there are mainly three integration meth-
ods; early integration[1] that connects the audio feature vector with the
visual feature vector, late integration[2] that weights the likelihood of the re-
sult obtained by a separate process for audio and visual signals, and synthetic
integration[3] that calculates product of output probability in each state and so
on. The research to lip-reading only in the visual feature is actively advanced
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because the visual feature, of course the audio feature, greatly influences the
recognition rate in these processing. As the visual feature, various techniques
such as width and height of lip[4], optical flow[5] and DCT[6] are employed.

In our research, the lip area is automatically extracted by Active Appear-
ance Models[7][8] (AAM) regardless of speaker’s position in the dynamic scene.
Moreover, the combined parameter of AAM(c parameter) is employed as the fea-
ture parameter for utterance recognition. It is thought that shape information
included in this parameter can express the lip contour movement, and texture
information can express intensity changes such as tooth. Therefore, in this pa-
per, we propose a method that constructs visual HMM using c parameter and
integrates it with audio HMM. AdaBoost method[9] is employed that uses the
Haar-like feature as a face area extraction method, and the late integration
that does not take care of audio-visual asynchrony is employed as an integrated
method of audio and visual information.

2 System Flow

Fig. 1 shows the block diagram of a processing flow. First, the face area is
detected by AdaBoost method that uses the Haar-like feature on the input movie.
This is because the extraction accuracy of the feature points by AAM search
greatly depends on the initial search area. Therefore, the extraction accuracy of
the feature points improves by giving the face area detected by AdaBoost as an
initial search area of AAM.

Next, AAM is applied to the detected face area. This process contains two
kinds of AAMs. One is the whole face AAM constructed with the training image
set in which the feature points are given manually beforehand. The other is the
lip area AAM constructed with feature points of the lip area.The purpose of
utilizing two AAMs is to extract the feature points accurately on the lip area
by applying the whole face AAM roughly at first and then applying the lip area
AAM precisely on the extracted lip area. If c parameter extracted from the
whole face AAM is used as a recognition parameter, the recognition rate might
decrease by the information other than the lip area. Therefore, we use two kinds
of AAMs to extract a more accurate parameter of the lip area.
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When the lip area AAM is applied to the input image, c parameter that
generates the most similar lip area image with the input image is extracted
as the visual feature. In training, audio and visual HMMs are independently
constructed by using the visual feature and audio feature extracted from the
same movie. Finally, the recognition result is output by integrating likelihoods
from visual HMM and audio HMM.

3 Feature Extraction

3.1 Active Appearance Models

AAM is a technique to express the face model by the low-dimensional parameter.
The subspace is constructed by applying PCA to shape and texture of face
feature points.

The shape vector s that is composed of the feature points on the face image
and mean shape s̄ is computed from the training image set. Inner texture of s
is normalized to mean shape. The shape vector s and the texture vector g are
given in s = (x1, y1, · · · , xn, yn)T , g = (g1, · · · , gm)T . where xi, yi (1 ≤ i ≤ n)
are the coodinates of the feature points. gj (1 ≤ j ≤ m) is the intensity value
at each pixel within the area srrounded by s̄, and mean intensity value ḡ can be
computed from the training image set. Vectors s and g are expressed by using
eigenvector matrices Ps and Pg, obtained by applying PCA to deviation from
s̄ and ḡ, as shown in Eq. (1) and Eq. (2).

s = s̄ + Psbs (1)
g = ḡ + Pgbg (2)

bs and bg are called the shape parameter and the texture parameter respectively,
and shape vector s and texture vector g are converted to them. Moreover, bs

and bg are combined and reduced as shown in Eq. (3) by applying PCA because
there is a correlation in shape and texture parameters.

b =
(

Wsbs

bg

)
=

(
WsPT

s (s − s̄)
PT

g (g − ḡ)

)
=

(
Qs

Qg

)
c = Qc (3)

where Ws is the matrix that normalizes the difference of the unit between the
shape vector and the texture vector. Q is an eigenvector matrix, and c, called
combined parameter, is a parameter that controls both shape and texture. s and
g are expressed as shown in Eq. (4) and Eq. (5) by c.

s(c) = s̄ + PsWs
−1Qsc (4)

g(c) = ḡ + PgQgc (5)

Thus, it becomes possible to treat shape and texture together by controlling
parameter vector c.
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Fig. 2. Construction of two kinds of AAMs

3.2 Model Construction

Two kinds of AAMs are constructed as described in Chapter 2. The whole face
AAM is constructed by using the shape information and the inside texture in-
formation from the training image set with the feature points manually given to
the whole face as shown in Fig. 2. The lip area AAM is constructed with the
shape information and the inside texture information extracted automatically
from the feature points only on the lip area extracted by the whole face AAM.

3.3 Combined Parameter

Since the images with the mouth opening and closing are included in the training
data set of AAM, the various movements of the lip can be expressed by changing
c parameter as shown in Fig. 3. Since c parameter has information on detailed
shape and the intensity value of the lip, we propose to utilize c parameter as
the visual feature. As an extraction method of c parameter, error e between
the image g(c) generated by AAM (this is called a model image) and the input
image is formulated as shown in Eq. (6).

e(c, p) = ‖g(c) − Ii(W(p))‖2 (6)

where Ii(W(p)) is the image obtained by Affine transform to the input image Ii.
p is an Affine parameter of scaling, rotation and translation and W is a function
that executes the Affine transform. The number of dimension of c is set to 10.
78 training images are prepared. Since the video rame rate is about 1/3 of audio
frame rate in our data set, there is a possibility that the visual recognition rate
decreases compared to the audio recognition rate. Therefore, it is interpolated
by the cubic spline function between visual frames. c parameters obtained thus,
its Δ and ΔΔ coefficients with 30 dimensions in total are finally used as the
visual feature.

3.4 Additional Feature

In order to compare with c parameter, 2D DCT and pixel values on the lip area
are extracted. The lip area is located by the whole face AAM, and the area is



Audio-Visual Speech Recognition Based on AAM Parameter 101

Mean textureClosed lip

/ a / / i /

/ u /

Fig. 3. Example of model images generated by changing c parameter (in a counter-
clockwise fashion from the top middle, mean texture, the closed lip, utterance /a/, /i/
and /u/.)

normalized to the square with the fixed ratio of width to hight and converted
into the gray scale. The feature is extracted on this area. A square size is 32 32
pixel. PCA is applied to this 1024 dimensional vector of pixel values for the
dimension reduction. The number of dimension is set to 10 according to the
cumulative contribution ratio 90% . PCA score, its Δ and ΔΔ coefficients with
30 dimensions in total are used as the feature of PCA score. In a case of 2D
DCT, after DCT operation, 16 low-frequency components are selected because
the information concentrates on the low-frequency region in DCT. DCT, its Δ
and ΔΔ coefficients with 48 dimensions in total are used as the feature of DCT.

4 Recognition Method

As a recognition method, both word type HMM and subword type HMM are
used. MFCC with 12 dimensions and logarithm power, their Δ and ΔΔ coeffi-
cients with 39 dimensions in total are used as the audio feature. A final likelihood
is calculated by the late integration of audio and visual information as shown in
Eq. (7)[2].

LA+V = αLA + (1 − α)LV , 0 ≤ α ≤ 1 (7)

where LA+V is a likelihood after integration, LA and LV are likelihoods of audio
and visual features respectively. α is the combination weight.

5 Experiment

5.1 Experimental Condition

We used ATR phoneme balance words (216 words)×10 sets and single set of 100
words (different from 216 words) chosen at random from ATR phoneme balance
sentences as an utterance words. Logicool Qcam Orbit MP was used as a filming
equipment and SONY ECM-PC50 was also used as a microphone. Resolution
was 960×720 pixel, and the frame rate was 30fps.
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Fig. 4. Recognition results by various audio and visual features in different conditions

One specific speaker uttered in a clear tone with the frontal face. The dis-
tance from the speaker to the camera was about 40cm. The noise was added
onto the speech so that SNR became 5dB, 0dB and -5dB. The leave-one-out
method was applied to 216 words×10 sets, and the recognition rate was the av-
erage over the 10 sets. We call this experiment as one under the language closed
condition because the same 216 words are used for training and recognition. In
addition, 216 words×10 sets were used for training, and 100 words×1 set were
recognized. We call this experiment as one under the language open condition,
because 100 words are recognized different form 216 words used for training.
Word type HMMs were constructed with 5 states and 4 mixtures and used in
the language closed condition. As subword type HMMs, monophone HMMs were
constructed and used in both the language closed and open conditions. The num-
ber of mixture was experimentally chosen for the best one in the language open
condition.

5.2 Recognition Result by Using Respective Feature

Fig. 4 shows the result of the utterance recognition carried out separately using
the visual feature and audio feature respectively. Closed1 in Fig. 4 indicates
the recognition rate by word type HMM, closed2 is by subword type HMM
in the language closed condition, and open is in the language open condition.
C parameter(face) and C parameter(lip) indicate the recognition results by c
parameter extracted from the whole face AAM and the lip AAM respectively.

Comparing these results in terms of the features, a high recognition rate was
obtained by the conventional features and c parameter in closed1. Moreover,
it was confirmed that the lip area c parameter was more effective than the
conventional features in closed2 and open.

Comparing these results in terms of the conditions, the recognition rate de-
creased in closed2 and open compared with closed1 for the visual feature while
it was high in any condition for audio feature. The difference of the conditions
between closed1 and closed2 was the HMM type; word type HMM or subword
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Fig. 5. Recognition rates as a function of
the number of mixtures(closed2)
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Fig. 6. Recognition rates as a function of
the number of mixtures(open)

type HMM. The recognition rate by the subword type HMM was lower than
that by the word type HMM because connected training of the phoneme was
necessary for the subword type HMM. In the open condition, the recognition
rate was lower than that in closed2. Fig. 5 and 6 show the recognition rates
by the visual HMMs as a function of the number of mixtures. In the figure, as
the number of mixtures increases, the recognition rate is improved in closed2.
Since the increase of the number of mixtures leads to the complex model and
the training words and test words are same in closed2, it seems that the model
is over-fitted to the training data. On the other hand, the recognition rate tends
to be lower as the number of mixtures increases in open. Due to this reason, in
closed2, the recognition rate is higher than that in open.

5.3 Integrated Result of Audio and Visual Features

In order to integrate the visual result with the audio result under noisy envi-
ronment, output likelihood by visual HMM with c parameter and that by audio
HMM were integrated by Eq. (7). Fig. 7 shows the recognition results at 5dB,
0dB and -5dB SNR of the speech data. The weight 1 − α to visual feature was
increased by 0.1 from 0.0 to 1.0.

Three types of integration of the visual HMMs were carried out with the
subword type audio HMM. They were word type visual HMM(closed1), subword
type visual HMM(closed2) in the language closed condition and subword type
visual HMM(open) in the language open condition respectively. A horizontal
axis in Fig. 7 indicates the weight to visual feature. The weight 0 corresponds
to audio feature only, and 1 to visual feature only.

From Fig. 7, it can be seen that, in any conditions, the recognition rate is
comparatively acceptable in clean and 5dB SNR environment. Therefore, the
recognition rate is high at any values of the weight and is improved by taking
the optimum value of the weight. The recognition rate by audio HMM greatly
falls down in the strong noisy environment at 0dB and -5dB SNR. However, it
can be improved by increasing the weight to the image. From these results, it can
be confirmed that the recognition rate is improved compared with audio feature
by integrating the visual feature and audio feature under noisy environment.
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Fig. 7. Integrated result of audio and visual features

6 Phoneme Analysis of Visual Feature

6.1 Continuous Phoneme Recognition

In order to investigate the recognition accuracy of each phoneme using audio and
visual features, continuous phoneme recognition was carried out for words. The
language model was phoneme pair such that vowel appears after consonant and
consonant appears after vowel at equal probability. The acoustic model and the
visual model were the subword type audio HMM and the subword type visual
HMM trained by 216words×10 sets, and the recognition words were 100 words
used in the language open condition. The visual feature was c parameter.

Fig. 8 shows the confusion matrix of the phoneme recognition in language
open condition by audio features, and Fig. 9 shows the confusion matrix of the
phoneme recognition in language open condition by c parameter. ”IN” and ”LA”
in the figure indicate the number of insertion errors and the number of deletion
errors respectively. MoreoverCin order to evaluate the phoneme recognition ac-
curacy, the phoneme correct and the phoneme accuracy of vowel, consonant and
all phonemes were computed. The phoneme correct and the phoneme accuracy
correspond to word correct and word accuracy respectively when the phoneme
is regarded as a word.

Table 1 shows the result. In the table, the recognition accuracy is approx-
imately 80% in both vowel and consonant in audio. However, the recognition
accuracy of consonant is about 12% in open condition by visual feature though
vowel is approximately 70%, and the accuracy of all phonemes is approximately
40%. Thus, it can be said that consonants are not recognized well by the visual
feature.

6.2 Analysis of False Recognition of the Phoneme

In Fig.8 and Fig.9, both vowel and consonant recognition accuracies are high by
audio feature. On the other hand, in c parameter, vowels are recognized well to
some degree, but various errors occur more than audio feature in consonants.

The insertion error occurs a lot in ”r”. It is thought that the shape of the
mouth becomes same in ”a” and ”ra” and it can not be distinguished because
”r” is a consonant uttered by the movement of the tongue only. The deletion
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Table 1. Phoneme correct and phoneme accuracy (%)

Audio Visual

Open Open Closed2

Accuracy Correct Accuracy Correct Accuracy Correct

Vowel 82.91 82.91 67.81 68.38 65.46 66.21

Consonant 72.4 75.38 11.85 21.58 37.46 45.87

All 77.65 79.26 40.74 45.74 52.86 57.05

a a: b by ch d dy e e: f g gy h hy i i: j k ky m my n N ny o o: p py q r ry s sh t ts u u: w y z LA

a 84 3 1

a: 3

b 24 3 1 1 1 1 2

by 1

ch 13 1 1 1

d 11 1 1 2 5

dy

e 33

e: 1 1

f 2 11 1 6 1 5
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i 2 63 1 3 5

i: 1 1

j 1 11
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Fig. 8. Phoneme confusion matrix by au-
dio feature (open)

a a: b by ch d dy e e: f g gy h hy i i: j k ky m my n N ny o o: p py q r ry s sh t ts u u: w y z LA

a 63 3 11 2 9
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p 1 2 3
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q 1 5

r 2 1 2 7 1 13

ry 1

s 3 1 3 1 3
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t 3 1 1 1 2 1 1 2

ts 1 1 2 1

u 4 1 63 1 20

u: 6

w 1 3

y 2 1 3

z 2 1 1 1

IN 1 1 3 6 6 1 1 3 9 1 2

Fig. 9. Phoneme confusion matrix by vi-
sual feature (open)

error occurs a lot in ”N”. When ”N” appears at the end of the word, the mouth
becomes in a closed shape. Since the mouth is closed before and after the utter-
ance, it is regarded as a silent section, then the deletion error occurs. Moreover,
when ”N” appears in the word, the shape of the mouth is kept similar to the
previous vowel. Therefore, it is thought that the deletion error is increased be-
cause ”N” has a large variance and sparse feature. The substitution error occurs
in various phonemes. For instance, ”k” is falsely recognized as the consonants
such as ”g”, ”n” and ”r”. It is thought that the substitution error occurs because
there is no movement of the mouth in these consonants.

6.3 Experiment with Viseme

The reason why the false recognition described in 6.2 is caused is attributed to
the fact that the phoneme is a minimum unit representing the sound. When the
phoneme is applied to the visual feature, the phonemes with the same shape of
the mouth such as ”k” and ”g” cannot be distinguished. Therefore, the viseme
will be the best unit, instead of the phoneme, to represent the visual feature.
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Fig. 10. Integrated result when the viseme is used for visual information and phoneme
is used for audio information

Table 2. Viseme correct and viseme accuracy (%)

Open Closed2

Accuracy Correct Accuracy Correct

Vowel 75.9 75.9 78.21 78.58

Consonant 47.69 57.85 63.28 68.44

All 62.54 67.35 71.59 74.08

From this viewpoint, the viseme was employed as a unit to represent the visual
feature, referring to Fukuda[10], and the visual data was recognized as was done
in Chapter 5 by visual HMM and the result was integrated with the audio
result. The number of mixtures was set to 12 based on the best result using the
viseme. There were some words that could not be distinguished like ”eikyou”
and ”eigyou” because both became ”eisyou” in viseme. For such words, the
same output likelihood from the visual HMM was integrated with those from
the audio HMMs with different phoneme sequence. Fig. 10 shows the integrated
result in closed2 and open.

In the figure, it can be confirmed that the recognition results are better than
those in Fig. 7, because the recognition rate by the visual HMM using viseme is
higher than that using phoneme shown in Fig. 7. Therefore, the highest accuracy
is obtained by integrating the recognition results using phoneme for audio feature
and viseme for visual feature.

As the experiment, the continuous viseme recognition was carried out. Fig.
11 shows the confusion matrix, and Table 2 shows the correct and the accuracy
when viseme is used.

Comparing Table 2 with Table 1, the viseme greatly improved the recogni-
tion accuracy in both vowels and consonants, compared to the phoneme case.
However, it is still low by about 10 points in closed2 compared to audio. In Fig.
11, ”N” has still many deletion errors as is described in 6.2 for the phoneme,
and ”t” has many substitution errors with various visemes. Viseme ”t” includes
the phoneme ”t”, ”d” and ”n”. In order to discriminate these, it is important
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a i u e o p r sy w t s y vf N LA

a 73 10 8

i 57 21

u 68 6 27

e 3 3 26 4

o 50 5

p 54 1

r 1 11 2 3 9

sy 1 44 2 2 2

w 1 26 3

t 5 2 2 15 1 2 5 7

s 5 7 8 1

y 1 2 2

vf 2 8 7 3 18 17

N 2 10 29

IN 10 18 1 3 1

Fig. 11. Viseme confusion matrix using c parameter(open)

to extract the movement of the tongue because they are uttered by changing
the tonge position. Moreover, if they can be discriminated, the accuracy of the
viseme ”vf” will be improved that has many substitution error to ”t”.

It is thought that there will be still room in the improvement of the visual
feature. In the future, we will investigate the feature that can be extracted from
the movement of the tongue described above, and the feature that can recognize
”N” clearly.

7 Conclusion

We proposed to utilize c parameter extracted by Active Appearance Model ap-
plied to a face image for the utterance recognition. The effectiveness was con-
firmed by integrating c parameters as the visual feature with the audio feaure.
The difference between the phoneme recognition accuracy by the audio feature
and the visual feature was clarified by calculating the phoneme confusion matrix.
In addition, the phoneme score from audio feature and the viseme score from
visual feature were integrated with high accuracy.

In our approach, the utterances spoken by one specific speaker with a clear
tone were recognized in the experiment. Future tasks include the recognition of
utterances spoken by more people, new integration method of audio and visual
feature, weight optimization technique, recognition of speech with spontaneous
tone, application of AAM to images with various face directions, expansion to
continuous speech recognition, and robustness to the difference of time session.
Though monophone type HMM was used in this experiment because of the
data amount, a further improvement of the recognition rate will be expected by
increasing the data amount and using triphone type HMM.
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