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ABSTRACT

NMF (Non-negative Matrix Factorization) has been one of
the most widely-used techniques for musical signal analysis
in recent years. In particular, the supervised type of NMF is
garnering much attention in source separation with respect
to the analysis accuracy and speed. In this approach, a large
number of spectral samples is used for analyzing a signal. If
the system has a minimal number of samples, the accuracy
deteriorates. Because such methods require all the possible
samples for the analysis, it is hard to build a practical anal-
ysis system. To analyze signals properly even when short
of samples, we propose a novel method that combines a su-
pervised NMF and probabilistic search algorithms. In this
approach, it is assumed that each instrumental category has
a model-invariant feature called a probabilistic spectrum en-
velope (PSE). The algorithm starts with learning the PSEs
of each category using a technique based on Gaussian Pro-
cess Regression. Using the PSEs for spectrum generation,
an observed spectrum is analyzed under the framework of a
supervised NMF. The optimum spectrum can be searched by
Genetic Algorithm using sparseness and density constraints.

1. INTRODUCTION

Mixed music analysis (estimating the pitch and instrument
labels of each musical note from a single-channel polyphonic
music signal with multiple instruments) has been recognized
as one of the most challenging tasks in musical signal pro-
cessing. To achieve this, many approaches have been pro-
posed so far: ICA-based methods [1, 3], HTTC (Harmonic-
Temporal-Timbral Clustering) [6], Instrogram [5], etc. Of
all these techniques, the methods based on NMF (Non-negative
Matrix Factorization) have attracted considerable attention
lately as a way to analyze signals more effectively and more
easily. In many of these techniques, an observed spectro-
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gram matrix can be represented as a linear combination of
two matrices: a basis matrix whose columns roughly indi-
cate spectrums of each musical source with various pitches
and instruments, and an activity matrix which shows tempo-
ral information of each basis vector.

NMF-based analysis methods are broadly divided into
two categories: an unsupervised approach [4] and a super-
vised approach [2]. Since the former approach decomposes
the spectrogram without the assumption of the spectral struc-
tures of audio sources, the unintended basis matrix and ac-
tivity matrix will be obtained. Therefore, it is hard to an-
alyze mixed-source audio correctly using an unsupervised
approach.

On the other hand, a supervised approach decomposes a
mixed musical signal using the spectral templates of each
musical source, which are learned beforehand. Compared
to an unsupervised approach, this technique tends to pro-
duce preferable results in terms of analysis speed and ac-
curacy. However, if unlearned sounds are contained in the
test signal, the accuracy may deteriorate because there are
many different types (models) of instrument that belong to
the same instrumental category. For example, the “Piano”
category includes different models: “Piano1”,“Piano2”, and
so on. To improve the decomposition accuracy, many kinds
of spectral templates (not only different categories but dif-
ferent models in the categories) should be trained. However,
this is extremely difficult to build into a real system.

To solve this problem, we propose a novel method of
mixed music analysis, which uses a model-invariant fea-
ture (probabilistic spectrum envelope; PSE) of each cate-
gory. This feature is derived from the following idea. An
instrument’s spectrum can differ slightly due to various fac-
tors associated not only with the type of instrument (model)
but also the manufacturer, the materials used, the tempera-
ture, humidity, and playing-style, etc. However, the way the
spectrum fluctuates is not completely random, as it depends
on the instrument’s category. Therefore, we introduce the
PSE feature that does not depend on the pitch, the model,
the material, and other various factors. This is similar to a
spectrum envelope feature, which does not depend on the
pitch. The feature is defined as a set of the mean spec-
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trum envelope and variance spectrum envelope in the time-
frequency domain as shown in Figure 1 (a). Once the PSE
is estimated, any spectrum belonging to the category can be
obtained by multiplying various comb filters and randomly-
generated spectrum envelopes from the PSE.

Figure 1 shows a system flowchart of mixed music anal-
ysis under the PSE framework. In our approach, unsuper-
vised NMF and extended Gaussian Process (SPGP+HS [7])
are employed to estimate the PSE features of each category
on the training stage. At the analysis stage, we use super-
vised NMF for the analysis, in which an optimum basis vec-
tor can be searched using a Genetic Algorithm with sparse-
ness and density constraints.
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Figure 1. Flowchart of mixed music analysis using propa-
bilistic spectrum envelope (PSE). The red and blue color in-
dicate the large and small values of probability, respectively.
The black and white lines are the mean envelope, and mean
plus/minus variance envelope.

2. PSE ESTIMATION

2.1 Spectral peaks extraction

The probabilistic spectrum envelope (PSE) of each category
is estimated by SPGP+HS regression [7] in this paper. In
this section, we will discuss the way spectral peaks (input
samples used for the regression) are obtained.

First, we prepare some acoustic signals, each of which
contains only the needed musical sources of the instrumen-
tal category. The various sources do not sound at the same
time. In this paper, 12 half-tone sources sound in sequence
every octave. Employing NMF to the amplitude spectro-
gram V (∈ RF×T ) of the signal, V is approximately de-
composed into the product of a basis matrix W (∈ RF×R)
and an activity matrix H (∈ RR×T ) as follows:

V ≈WH (1)

∀i, j, k,Wij ≥ 0, Hjk ≥ 0 (2)

where F, T and R are the numbers of bins of frequency, time
and bases, respectively (here, R = 12).

W and H can be obtained by iteratively calculating up-
date rules based on Euclidean divergence. The update rules

for each matrix element are:

Wij ← Wij
(VHT )ij

(WHHT )ij
(3)

Hjk ← Hjk
(WT V)jk

(WT WH)jk
. (4)

From the updated matrix W, a set of N spectral peaks
P = (f , y) = {(fn, yn)}n are exploited, where fn and yn

are frequency and amplitude of the n-th peak, respectively.
These peaks are found by searching for the harmonic peaks
of each basis vector.

2.2 PSE estimation using SPGP+HS

In this paper, the PSE of each category can be estimated
by extended Gaussian Process (SPGP+HS [7]), which can
approximate the shape of any function with varying variance
more accurately than the standard Gaussian Process.

By giving a set of peaks, P, to one-dimensional SPGP+HS,
we obtain PSE mean envelope µf and PSE variance enve-
lope σf , as follows:

µf = KffmQKfmfnΛ−1y (5)

σf = Kff −Kffm(K−1
fmfm

−Q)KT
ffm (6)

where, Q =
(
Kfmfm + KfmfnΛ−1KT

fmfn

)−1

and Λ =

diag(Kfnfn −KT
fmfn

K−1
fmfm

Kfmfn). Kab is a gram ma-
trix between a and b with a parameter θ. Pseudo-inputs
f̄ = {f̄m}Mm=1 indicate the representatives of any inputs
f , satisfied M � N . hm ∈ h denotes an uncertainty pa-
rameter to the pseudo-input f̄m. We can find the optimum
parameters h, θ, f̄ based on a gradient-based method (for
more details, see [7]).

3. ANALYSIS METHOD

3.1 Spectrums generation based on PSE

The spectrum envelope ec(f) based on the PSE of category
c is randomly generated as follows:

ec(f) ∼ N (µc
f , σc

f ). (7)

N (µ, σ) shows the normal distribution of mean µ and vari-
ance σ.

Spectrum p(f), with a fundamental frequency f0 along
the envelope, ec(f) can be specifically calculated in Eq. (8).

p(f) = max
(
ec(f), 0

)
·Ψ(f ; f0) (8)

The reason for the maximum expression in Eq. (8) is that a
spectrum cannot have negative values. Ψ(f ; f0) is a comb
filter with a fundamental frequency f0, calculated as:

Ψ(f ; f0) =
∑

l

exp
{
− (f − f0 · l)2

2ν2

}
(9)
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where l is the index of Gaussian components, and ν is a
hyper-parameter to determine the kurtosis of each compo-
nent.

Using the above procedure, we can obtain an intended
basis matrix W̃ whose columns (spectrums) are randomly
generated for various categories and fundamental frequen-
cies.

3.2 Basis matrix optimization using Genetic Algorithm

What we want to do in the analysis stage is to find the op-
timum NMF matrices Ŵ and Ĥ for a given test signal. To
do this, we introduce an optimization method based on ge-
netic algorithm (GA), which is a method for finding the op-
timum by repeating natural-evolution-inspired techniques:
selection, crossover, mutation and inheritance.

Given an amplitude spectrogram X of a test signal and
a randomly-generated basis matrix W̃, the activity matrix
H can be calculated by applying supervised NMF with W̃.
That is, each element of H is repeatedly updated by Eq. (4)
while keeping W̃ fixed. Since W̃ determines H in this cal-
culation, H can be considered as a function of W̃. If W̃ has
better (more suited) spectral columns for the test signal, the
distance between X and W̃H must become smaller. There-
fore, the minimization of Euclidean distance DEUC(X,W̃H)
can be used as a criterion for finding the candidate W̃. In
addition to the distance criterion, we give two constraints
sp(H) and den(H). The former sp(H) leads the matrix H
to be sparse, which is

sp(H) =
# {(j, k)|Hjk ≤ ε}

R× T
(10)

where, ε(≥ 0) is a small value (in our experiments, ε = 0.1).
The other constraint den(H) represents the “density” of

the elements in H. This idea is inspired by the fact that
musical notes of each instrument tend to group together in
regard to time and tone. We define the constraint den(H)
as:

den(H) =

∑
k,l,l′ exp

{
− (sk,l−sk+1,l′ )

2

2ρ2

}
∑

k Nk
(11)

{sk,l}Nk

l=1 = { j |Hjk ≥ ε} (12)

where ρ is a constant factor for determing the allowance for
distant tones (in our test, ρ = 3).

Finally, we set the criteria for the optimum search of the
candidate W̃ as follows:

Θ(W̃) = DEUC(X,W̃H)−α ·sp(H)−β ·den(H) (13)

where, α (≥ 0) and β (≥ 0) are weight parameters that
reflect the effects of sparseness and density constraints, re-
spectively.

In our analysis method, the optimum basis matrix Ŵ
is obtained using GA to minimize the objective function
(13). The first step of GA is to generate U (= 12, in our
tests) basis matrices {W̃u}Uu=1 from pre-trained PSEs (See
3.1.), and evaluate the objective function for each matrix by
Eq. (13). Note that fundamental frequency of each column
in the u-th basis matrix W̃u is different from the others, but
the fundamental frequency of the l-th column for all basis
matrices has the same fundamental frequency. To update
the whole set, the following process is repeated G (= 100,
in this paper) times:

1. Copy the best (smallest-objective) basis matrix of the
previous generation to the current generation.

2. With a probability pcross, exchange two selected basis
matrices according to the uniform crossover.

3. With a probability pmut, mutate a selected basis ma-
trix based on PSE.

4. Repeat step 2 and 3 until the number of basis matrices
of the current generation reaches L.

Concerning the expression “select” above, the probability
of u-th candidate selection is defined as Θ(W̃u,H̃u)

PU
u=1 Θ(W̃u,H̃u)

.

This shows that the better W̃u tends to be selected more.
pcross and pmut in steps 2 and 3 are respectively the prob-
abilities of crossover and mutation, which satisfy pcross +
pmut = 1 (in this paper, pcross = 0.9, pmut = 0.1). Fur-
thermore, our GA has the constraints that each basis matrix
mutates without altering the fundamental frequencies. In
other words, the mutated new vector is calculated by multi-
plying the randomly-generated spectrum envelope from PSE
by the comb filter that has the same fundamental frequency
as the original one. Therefore, basis matrices of each gener-
ation can be generated without changing the information on
the fundamental frequency and category we set at first.

The final analysis result is the optimum NMF matrices
Ŵ and Ĥ, which are the best matrices in G-th generation
(Ĥ is obtained by supervised NMF with the optimum basis
matrix Ŵ). Because Ŵ contains a category index c, a test
signal can be decomposed into each instrument.

4. EXPERIMENTS

To evaluate our proposed method, “wav-to-mid” tests were
conducted. In these experiments, an acoustic data synthe-
sized with MIDI sounds is automatically converted into MIDI
format. A part of “RWC-MDB-C-2001 No. 43: Sicilienne
op.78” from RWC Music Database1 was used for the test
(Figure 3 (a)). The monaural test signal was recorded at a
16 kHz sampling rate using multiple MIDI instruments: Pi-
ano and Flute (exactly, “Piano1” and “Flute1” instrumental

1 http://staff.aist.go.jp/m.goto/RWC-MDB/
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models of MIDI, respectively). Before the test, PSEs for the
two categories were trained using the different sounds from
the test signal (“Piano2” for “Piano” PSE and “Flute2” for
“Flute” PSE). Using the PSEs, GA found the optimum ma-
trices Ŵ and Ĥ. By binarizing Ĥ with an adequate thresh-
old, we obtained the final results of MIDI format. The re-
sults were compared for the cases in which the objective
function of GA has sparseness and density constraints and
when it does not (“sp+den”, “sp”,“den”,“w/o”). Since the
results depend on the initial values of {W̃u}Uu=1, we re-
peated each method by 100 times and computed the mean,
maximum, and minimum values of accuracy. We also com-
pared the results with the conventional method, supervised
NMF (“s-NMF” given the basis matrix of “Piano2”, “ideal”
given that of “Piano1”).

Figure 2 illustrates MIDI-conversion accuracies for each
method. The accuracy is calculated as Nall−(Nins+Ndel)

Nall
×

100, where Nall, Nins and Ndel mean the total number of
notes, insertion errors, and deletion errors, respectively. Be-
cause onset time and the duration of each sound source are
not necessarily correct in the above binarizing process, we
permitted the duration to differ and the onset time to shift
τ seconds (in this paper, τ = 0.3). The bar values of our
methods in the figure are average accuracies for 100 tries,
and the error bars indicate maximum and minimum values
of the tries. Concerning the results of conventional meth-
ods, if the system knows exactly the same sounds as the test
signal, it yields high performance (ideal). However, if the
system does not know, the accuracy deteriorates dramati-
cally (s-NMF). Meanwhile, each of our approaches main-
tains high accuracy even when the system does not learn
the sounds of the test data. The preferable results are due
to the fact that each PSE can be estimated by only various
pitches, and it can cover spectrum envelopes of unknown
models. Comparing within our approaches, the system with
sparseness or density constraints achives better accuracy,
and when both constraints were added (“sp+den”), for the
tests with the best results, there were cases when the accu-
racy even exceeded the ideal value.

An analysis example of “sp+den” tries is shown in Fig-
ure 3 (b). Almost all the notes were estimated correctly,
but parts of them were mistaken as octave-different notes.
Therefore, we will improve the accuracy by adding other
constraints to avoid octave differences in the future.
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Figure 2. Accuracy rates of each method.
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Figure 3. (above) Piano-roll representation of test MIDI
data. The red and purple parts indicate piano and violin
tones, respectively. (below) An example of analysis results
with sparseness and density constraints.

5. CONCLUSIONS

In this paper, we proposed an algorithm for monaural sound
source decomposition and multiple-pitch estimation. The
method categorizes several spectrum envelopes for each mu-
sical category, inspired by invariance of spectral fluctuation
in a category. This categorized envelope, called the prob-
abilistic spectrum envelope (PSE), has a characteristic of
being able to absorb differences between models, pitches,
manufactures, playing-style, and so on. PSE consists of a
mean envelope and variance envelope which can be simul-
taneously estimated by SPGP+HS regression as described
in this paper. In the analysis stage, Genetic Algorithm (GA)
with supervised-NMF-based objective and sparseness/density
constraints was employed for an optimum search in all the
spectrum envelopes that can be generated from the PSE.

The simulation experiments using MIDI sources show
that the proposed method is robust to instrumental model
changes. Since the results depend on the initial values, how-
ever, future research will include designing a directly opti-
mum search method, such as ML (Maximum likelihood) or
MAP (Maximum a posteriori) estimations.
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