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Abstract
NMF (Non-negative Matrix Factorization) has been one of the
most useful techniques for audio signal analysis in recent years.
In particular, supervised NMF, in which a large number of sam-
ples is used for analyzing a signal, is garnering much attention
in sound source separation or noise reduction research. How-
ever, because such methods require all the possible samples
for the analysis, it is hard to build a practical system based
on this method. In this paper, we propose a novel method of
signal analysis that combines the NMF and probabilistic ap-
proaches. In this approach, it is assumed that each audio-source
category (such as phonemes or musical instruments) has an
environment-invariant feature, called a probabilistic spectrum
envelope (PSE). At the start, the PSE of each category is learned
using a technique based on Gaussian Process Regression. Then,
the observed spectrum is analyzed using a combination of su-
pervised NMF and Genetic Algorithm with pre-trained PSEs.
Index Terms: signal analysis, source separation, non-negative
matrix factorization, probabilistic spectrum envelope, Gaussian
process, genetic algorithm

1. Introduction
Source separation from a single-channel signal has been rec-
ognized as a challenging task in signal processing. To achieve
this, many approaches have been proposed so far; for example, a
method based on factorial HMM [1], an ICA-based method [2],
etc. Of all these techniques, the methods based on NMF (non-
negative matrix factorization) have attracted considerable atten-
tion lately as a way to analyze signals more effectively and more
easily. Many of these techniques adapt a NMF algorithm to
the decomposition of the observed spectrogram matrix into two
matrices. One is a basis matrix, whose rows roughly indicate
spectrums corresponding to each acoustical event (phonemes in
a speech signal, or musical tones in a musical signal, etc. In this
paper, we focus on musical signal analysis.) The other is called
an activity matrix, which shows temporal information of each
basis vector.

The analyzing methods based on NMF are broadly divided
into two categories: an unsupervised approach [3, 4, 5] and a
supervised approach [6, 7, 8]. Because the former approach de-
composes the spectrogram without the assumption of the spec-
tral structures of audio sources, the unintended basis matrix and
activity matrix will be obtained. Therefore, it is hard to analyze
mixed-source audio correctly using an unsupervised approach.

On the other hand, a supervised approach decomposes the
mixed signal using the spectral templates of each acoustical
event, which are learned beforehand. Compared to an unsu-
pervised approach, this technique tends to produce preferable
results in terms of analysis speed and the accuracy. However, if
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Figure 1: Examples of probabilistic spectrum envelope; the left
is Piano and the right is Violin. The red and blue color in the
figure indicate the large and small values of probability, respec-
tively. The black line is the mean envelope, and the white lines
are the mean envelope plus and minus variance envelope.

unlearned sounds are contained in the test signal, the accuracy
may deteriorate because there are very many models that be-
long to the same category of musical instruments. For example,
the “Piano” category includes different models made: “Piano1”,
“Piano2”, and so on. To improve the decomposition accuracy,
many kinds of spectral templates (not only different categories
but different models in the categories) should be trained. How-
ever, this is extremely difficult to build into a real system.

To solve this problem, we propose a novel method of mixed
audio analysis, which uses the model-invariant features (proba-
bilistic spectrum envelope; PSE) of each category. This feature
is derived from the following idea. An instrument’s spectrum
can differ slightly due to various factors associated not only with
the type of instrument (model) but also the manufacturer, the
materials used, the temperature, humidity, and playing-style,
etc. However, the way the spectrum fluctuates is not completely
random, as it depends on the instrument’s category. Therefore,
we introduce the PSE feature that does not depend on the pitch,
the model, the material, and other various factors. This is sim-
ilar to the spectrum envelope, which does not depend on the
pitch. The feature is defined as a set of the mean spectrum en-
velope and variance spectrum envelope in the time-frequency
domain as shown in Figure 1. Once the PSE is estimated, any
spectrum belonging to the category can be obtained by multi-
plying a set of comb filters and randomly-generated spectrum
envelopes from the PSE.

Figure 2 shows a system flowchart of mixed sound analysis
using PSE representation. In our approach, unsupervised NMF
and extended Gaussian Process (SPGP+HS [9]) are employed
to estimate the PSE features of each category on the training
stage. When analyzing a test signal, we use semi-supervised
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NMF with the basis matrix changed to fit the signal using Ge-
netic Algorithm based on the pre-trained PSE.
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Figure 2: Flowchart of proposed method. Modeling of proba-
bilistic spectrum envelopes and analyzing mixed music signals
using the envelopes.

2. Estimating PSE
2.1. Spectral peaks extraction

The probabilistic spectrum envelope (PSE) of each category is
estimated by SPGP+HS regression [9] in this paper. In this sec-
tion, we will discuss the way spectral peaks (input samples used
for the regression) are obtained.

First, we prepare some acoustic signals, each of which con-
tains only the needed musical sources of the instrumental cat-
egory. The various sources do not sound at the same time. In
this paper, 12 half-tone sources sound in sequence every octave.
Employing NMF to the amplitude spectrogram V (∈ RF×T )
of the signal, V is approximately decomposed into the prod-
uct of a basis matrix W (∈ RF×R) and an activity matrix
H (∈ RR×T ) as follows:

V ≈WH (1)
∀i, j, k,Wij ≥ 0, Hjk ≥ 0, (2)

where F, T, R are the numbers of bins of frequency, time and
bases, respectively (here, R = 12).

W and H can be obtained by iteratively calculating update
rules based on Euclidean divergence. The update rules for each
matrix element are:

Wij ← Wij
(VHT )ij

(WHHT )ij
(3)

Hjk ← Hjk
(WT V)jk

(WT WH)jk
. (4)

From the updated matrix W, a set of N spectral peaks P =
(f , y) = {(fn, yn)}n are exploited. These peaks are found by
searching for the harmonic peaks of each basis vector.

2.2. PSE estimation using SPGP+HS

PSE is defined as a spectrum envelope with variance values.
Therefore, we employed extended GP (SPGP+HS [9]), which

can approximate the shape of any function with varying vari-
ance, for the estimation of the PSE.

By giving a set of peaks, P, to one-dimensional SPGP+HS,
we obtain PSE mean envelope µf and PSE variance envelope
σf , as follows:

µf = KffmQKfmfnΛ−1y (5)

σf = Kff −Kffm(K−1
fmfm

−Q)KT
ffm (6)

where, Q =
`

Kfmfm + KfmfnΛ−1KT
fmfn

´−1
and Λ =

diag(Kfnfn − KT
fmfn

K−1
fmfm

Kfmfn). Kab is a gram ma-
trix between a and b with a parameter θ. Pseudo-inputs f̄ =
{f̄m}Mm=1 indicate the representatives of any inputs f , satisfied
M � N . hm ∈ h denotes an uncertainty parameter to the
pseudo-input f̄m. We can find the optimum parameters h, θ, f̄
by using a gradient-based method (for more details, see [9]).

3. Analyzing mixed sound
3.1. Spectrums generation based on PSE

The spectrum envelope ec(f) based on the PSE
Ec(f, y; µc

f , σc
f ) of category c is randomly generated as

the following:
ec(f) ∼ N (µc

f , σc
f ) (7)

N (µ, σ) shows the normal distribution of mean µ and variance
σ.

Spectrum p(f), with a fundamental frequency ν along the
envelope, ec(f) can be specifically calculated in Eq. (8).

p(f) = max
`

ec(f), 0
´

·Ψ(f ; ν) (8)

The reason for the maximum expression in Eq. (8) is that a spec-
trum cannot have negative values. Ψ(f ; ν) is a comb filter with
a fundamental frequency ν, calculated as:

Ψ(f ; ν) =
X

l

exp



− (f − ν · l)2

2λ2
0

ff

(9)

where l is the index of Gaussian components, and λ0 is a hyper-
parameter for determining the kurtosis of each component.

The above procedure can generate the spectrum of category
c and fundamental frequency ν.

3.2. Fitness calculation with supervised NMF

We set an intended basis matrix W̃ whose rows are randomly
generated from PSEs of various categories. Various fundamen-
tal frequencies of each row vector w̃(f) are not duplicated for
each category.

Given an amplitude spectrogram X of a test signal, an ac-
tivity matrix H̃ can be calculated by applying supervised NMF
with W̃. That is, only each element of H̃ is repeatedly updated
by Eq. (4) while keeping W̃ fixed.

Fitness Θ(W̃, H̃) of given W̃ and H̃ is defined as:

Θ(W̃, H̃) =
1

DEUC(X,W̃H̃)
(10)

where, DEUC is Euclidean distance. If W̃ has better spec-
tral rows for the test signal, the distance between X and W̃H̃
becomes smaller. Therefore, the better W̃ for the test signal
makes fitness Θ(W̃, H̃) larger.
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Table 1: GA keywords in proposed method.
keyword meaning
individual a basis matrix W̃
gene a basis vector w̃(f)

fitness inverse of the distance DEUC(X,W̃H̃)
crossover search the optimum by combining multiple PSEs
mutation search the optimal spectrum envelope from PSE

3.3. Basis matrix optimization using Genetic Algorithm

What we want to do in the analysis stage is to find the optimum
NMF matrices Ŵ and Ĥ for a given signal. To do this, we intro-
duce an optimization method, which combines PSE, supervised
NMF and genetic algorithm (GA).

GA is a method for finding the optimum by repeating
natural-evolution-inspired techniques: selection, crossover, mu-
tation and inheritance. Table 1 summarizes the meanings of
each GA keyword in our proposed method.

The first step of the analysis stage is to generate L number
of basis matrices {W̃l}Ll=1 from pre-trained PSEs (See 3.1.),
and calculate the fitness for each matrix (See 3.2.). Every matri-
ces have the same fundamental frequencies in their basis rows.
To update the whole set, the following process is repeated G
times:

1. Copy the best basis matrix (the one with the highest fit-
ness) of the previous generation to the current genera-
tion.

2. With a probability pcross, exchange two selected basis
matrices according to the uniform crossover.

3. With a probability pmut, mutate a selected basis vector
based on PSE.

4. Repeat step 2 and 3 until the number of basis matrices of
the current generation reaches L.

Concerning the expression “select” in the above, a probability
ql, at which the basis W̃l is selected, is defined as:

ql =
Θ(W̃l, H̃l)

PL
l=1 Θ(W̃l, H̃l)

(11)

Eq. (11) shows that the better W̃l tends to be selected more.
pcross and pmut in steps 2 and 3 are the probabilities of
crossover and mutation, respectively. They satisfy pcross +
pmut = 1.

Furthermore, the above GA steps have the following condi-
tions and constraints in this paper:

• “Crossover” in step 2 is a uniform crossover with a prob-
ability of 0.5. Each new vector is either of the two par-
ents.

• In the “mutate” step, each basis vector mutates with a
probability of λmut (here, λmut = 0.9) without altering
the fundamental frequency. In other words, the new vec-
tor is calculated by multiplying the randomly-generated
spectrum envelope from PSE by the comb filter that has
the same fundamental frequency as the original one.

Because of these constraints, each basis vector of each basis
matrix of each generation can be generated without changing
the information on the fundamental frequency and category we
set at first.

The final analysis result is the optimum NMF matrices Ŵ

and Ĥ, which are the best matrices in G-th generation. Because
Ŵ contains a category index c, a test signal can be decomposed
into each source.

4. Experiments
4.1. Robustness in regard to changes in environment

To verify how robust the proposed method is in regard to envi-
ronmental changes, a “model-variant” test and a “reverb-added”
test were conducted. In these test, only a piano-category PSE
was trained. Training signals were recorded using MIDI piano
sound (“Piano1”) at a 16 kHz sampling rate. The MIDI file con-
tains 6-octave-half-tones sources (R = 72, N = 2705) from
“C1” to “B6”. In the experiments, 5 types of recordings were
prepared as various test signals:

(a) Played with “Piano1”

(b) Played with “Piano2” (another model than “Piano1”)

(c) Played with ‘Piano3’ (another model than “Piano1”)

(d) Recorded with a reverb level 40 (approximately 0.5 sec.)

(e) Recorded with a reverb level 100 (approximately 1.0
sec.)

All the test signals were recorded using a MIDI file, a part of
“RWC-MDB-C-2001 No. 43: Sicilienne op.78” from RWC
Music Database 1. When analyzing, we set the number of GA
individuals L = 5 and generations G = 20.

We compared the proposed method with the following:

(1) s-NMF: supervised NMF (given only “Piano1” basis)

(2) us-NMF: unsupervised NMF

(3) ex. s-NMF: supervised NMF (given all bases (a) ∼ (e))

Binarizing obtained activity matrices Ĥ with an adequate
threshold, and we obtained the final results of automatic mu-
sical transcription for each method.

Figure 3 illustrates transcription accuracies acc[%] for each
method. The accuracy is calculated as:

acc =
Nall − (Nins + Ndel)

Nall
· 100 (12)

where Nall, Nins and Ndel mean the number of all notes, in-
sertion errors, and deletion errors, respectively. Because onset
time and the duration of each sound source are not necessarily
correct in the above binarizing process, we permitted the dura-
tion to differ and the onset time to shift τ seconds (in this paper,
τ = 0.2).

According to the results of s-NMF, although the accuracy of
(a) is relatively high, when it comes to the other environments,
the accuracy deteriorates. Meanwhile, the decline cannot be
seen so much with ex. s-NMF. This means that supervised NMF
is not very robust to the sounds it does not know. The results
of the proposed method show comparatively high accuracy to
other environments (b) ∼ (e) even if the proposed system does
not know their sounds either. The preferable result is due to the
fact that 1) the proposed method can estimate PSE from various
pitches, not just various models or playing-styles, and 2) it can
cover spectrum envelopes of unknown models from the PSE.
For this reason, it can be said that the proposed method has
robustness to unknown sounds.

1http://staff.aist.go.jp/m.goto/RWC-MDB/
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As well as the proposed method, accuracies of unsupervised
NMF differ little among various environments. However, its re-
sults show the lowest accuracies due to the occurrence of unin-
tended bases.

60

70
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(a) (b) (c) (d) (e)

proposed
s-NMF
us-NMF
ex. s-NMF

Figure 3: Accuracy rates of each method.

4.2. Analyzing mixed sound with multiple categories

In the experiment with multiple musical instruments, the PSE of
the violin, in addition to the piano, were trained. The song used
for the test was the same as that of the previous experiments,
but multiple instruments played, as shown in Figure 4 (c). In
the figure, the red and purple parts indicate piano and violin
tones, respectively. Instrumental sources for the test and for the
training are the same. In this experiment, the number of GA
generations G was set to 500.

Analysis results using the proposed method are shown in
Figure 4. Figure 4 (a) and (b) are the results of initial and final
updating by GA, respectively. Category labels in error at the
initial updating (found at 6 ∼ 19 seconds, G]4 ∼ E5 tones of
both instruments) are corrected almost completely by the 500th
generation. This is because NMF matrices gradually get close
to the test as GA updating proceeds. The results are shown Fig-
ure 4 (b), and these instrumentally-mixed sources can be par-
tially separated. It is considered that there are definitive differ-
ences between piano PSE and violin PSE, and the differences
improve the separation accuracy.

The main advantage of our method is that it can separate
sound sources without having all possible knowledge about
the instruments, unlike the supervised NMF and unsupervised
NMF approaches. However, a larger number of generations G
is required to raise the accuracy. In order to make the fullest
possible use of PSE and reduce the computational time, future
works include designing an EM-algorithm-based approach, in-
stead of using GA.

5. Conclusions
In this paper, we proposed an algorithm for monaural sound
source decomposition. The method categorizes some spectrum
envelopes for a certain musical or phoneme category, inspired
by invariance of spectral fluctuation in a category. This cat-
egorized envelope, called the probabilistic spectrum envelope
(PSE), has a characteristic of being able to absorb differences
between models, pitches, manufactures, playing-style, and so
on. PSE consists of a mean envelope and variance envelope.
Both of them can be simultaneously estimated by SPGP+HS
regression as described in this paper. In the analysis stage, Ge-
netic Algorithm (GA) with supervised-NMF-based fitness was
employed for an optimum search in all the spectrum envelopes
that can be generated from the PSE.
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Figure 4: Results of the experiment with multiple instruments.

The simulation experiments using MIDI sources show that
the proposed method is robust to environmental changes such
as different models of instruments and reverb addition. When
multiple categories are in a test signal, the separation worked to
some extent.
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