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Abstract
This paper presents a talker’s head orientation estimation
method using only a single microphone, where phoneme
HMMs (Hidden Markov Models) of clean speech are intro-
duced to separate the acoustic transfer function at the user’s po-
sition and head orientation. The frame sequence of the acoustic
transfer function is estimated by maximizing the likelihood of
training data uttered from a given position with a given head
orientation. Using the separated frame sequence data, the user’s
position and the head orientation are trained by Support Vec-
tor Machine (SVM) in advance. Then, for each test utterance,
the frame sequence of the acoustic transfer function is separated
based on the maximum likelihood estimation using the label se-
quence obtained from the phoneme recognition, and the user’s
position and head orientation are estimated by discriminating
the separated acoustic transfer function using SVM. The effec-
tiveness of this method has been confirmed by talker localiza-
tion and head orientation estimation experiments performed in
a real environment.
Index Terms: single channel, talker localization, head orienta-
tion, acoustic transfer function

1. Introduction
For human-human or human-computer interaction, the talker’s
head orientation is an important cue that determines not only
who is talking but also who he/she is talking to. This who-
talks-to-whom information can be helpful especially in multi-
user conversation scenarios, such as a meeting system and the
discrimination of system requests or users’ conversations.

Many systems have been tried in order to localize sound
sources. On the other hand, interest in the head orientation es-
timation from speech signals is relatively recent, and some ap-
proaches have been described [1, 2, 3, 4]. These methods use a
network of microphone arrays in order to estimate the talker’s
head orientation. The approach described in [1] is based on
the SRP-PHAT algorithm, which is often used for talker local-
ization. In that paper, they modify the SRP-PHAT function by
combining it with the weight function depending on the talker’s
head orientation. Other approaches focus on the radiation pat-
tern of the magnitude for each head orientation of the talker
[2, 3]. A method has also been proposed using the Direction-
of-Arrival (DOA) histogram made from the DOA estimation re-
sults [4]. However, microphone array network systems need to
be set along the walls of a given room so that sub-microphone
arrays surround the user, and these systems may not be suit-
able in some cases due to their size and cost. Therefore, single-
channel techniques are of interest, especially in small-device-
based scenarios.

In our previous work [5], we discussed a sound source lo-

calization method using only a single microphone. In that re-
port, the acoustic transfer function was estimated from observed
(reverberant) speech using a clean speech model without texts
of the user’s utterances, and an HMM was used to model the
features of the clean speech. Using HMM separation, it is
possible to estimate the acoustic transfer function using some
adaptation data (only several words) uttered from a given posi-
tion. For this reason, measurement of impulse responses is not
required. Because the characteristics of the acoustic transfer
function depend on each position, the obtained acoustic transfer
function can be used to localize the talker. This estimation is
performed in the cepstral domain employing an approach based
upon maximum likelihood. This is possible because the cepstral
parameters are an effective representation for retaining useful
clean speech information. Using the estimated frame sequence
data, the user’s position is trained, and for each test utterance,
the user’s position is estimated by discriminating the separated
acoustic transfer function in the same way.

However, the impulse response may depend not only on the
talker’s position but also the head orientation. Therefore, in this
paper, we will discuss a single-channel head orientation estima-
tion method based on the discrimination of the acoustic trans-
fer function. The proposed method trains the given pair of the
talker’s position and the head orientation, while our previous
work trains only the talker’s position using the estimated frame
sequence of the acoustic transfer function. Compared with the
other published works, this method requires a training process
using a few observed speech utterances in advance. However,
our proposed method is able to set a microphone anywhere in
the given room. The effectiveness of this method has been con-
firmed by talker localization and head orientation estimation ex-
periments performed in a real room environment.

2. Proposed Method
2.1. System Overview

Figure 1 shows the system overview. First, we record the re-
verberant speech data O(φ,θ)

train uttered from each position φ with
each head orientation θ in order to train the acoustic transfer
function for the pair of φ and θ. Next, the frame sequence of the
acoustic transfer function Ĥ(φ,θ)

train is estimated from O
(φ,θ)
train us-

ing phoneme HMMs of clean speech. Then, the frame sequence
of the estimated acoustic transfer function Ĥ(φ,θ)

train is trained for
each pair of the user’s position and head orientation by SVM.
For test data O(φ,θ)

test (any utterance), the acoustic transfer func-
tion Ĥ(φ,θ)

test is estimated in the same way as the training data us-
ing a label sequence obtained from phoneme recognition. The
talker position and head orientation (φ̂, θ̂) pair is estimated by
discrimination of the acoustic transfer function based on SVM.
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Figure 1: System overview
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Figure 2: Estimation of the acoustic transfer function using
phoneme HMMs of clean speech

Figure 2 shows the detail of the estimation of the acoustic
transfer function using phoneme HMMs of clean speech. In ad-
vance, the phoneme HMMs of clean speech are trained using
a clean speech database. Next, the phoneme sequence of the
reverberant speech data is recognized by using each phoneme
HMM of clean speech data. Using the recognition results,
the phoneme HMMs are concatenated, and the frame sequence
of the acoustic transfer function Ĥ(φ,θ) is estimated from the
reverberant speech O(φ,θ) based upon a maximum-likelihood
(ML) estimation approach using the concatenated HMM.

2.2. Estimation of the Acoustic Transfer Function

This section presents the method for estimating the frame se-
quence of the acoustic transfer function [5]. The estimation
is implemented by maximizing the likelihood of the observed
speech data from a user’s position. The reverberant speech sig-
nal in a room environment is approximately represented in the
cepstral domain as

Ocep(d;n) ≈ Scep(d;n) +Hcep(d;n) (1)

where Ocep, Scep, and Hcep are cepstra for the reverberant
speech signal, clean speech signal, and acoustic transfer func-
tion in the analysis window n, respectively. Cepstral parameters
are an effective representation to retain useful speech informa-
tion in speech recognition. Therefore, we use the cepstrum for
acoustic modeling necessary to estimate the acoustic transfer
function. As shown in equation (1), ifO and S are observed,H
can be obtained by

Hcep(d;n) ≈ Ocep(d;n)− Scep(d;n). (2)

However, S cannot be observed actually. Therefore, H is esti-
mated by maximizing the likelihood (ML) of reverberant speech
using clean-speech HMMs.

The frame sequence of the acoustic transfer function in (2)
is estimated in an ML manner by using the expectation max-
imization (EM) algorithm, which maximizes the likelihood of
the observed speech:

Ĥ = argmax
H

Pr(O|H,λS). (3)

Here, λS denotes the set of concatenated clean speech HMM
parameters, while the suffix S represents the clean speech in
the cepstral domain. The EM algorithm is a two-step iterative
procedure. In the first step, called the expectation step, the fol-
lowing auxiliary function is computed.

Q(Ĥ|H)

= E[log Pr(O, p, bp, cp|Ĥ, λS)|H,λS ]

=
∑

p

∑
bp

∑
cp

Pr(O,p,bp,cp|H,λS)

Pr(O|H,λS)

· log Pr(O, p, bp, cp|Ĥ, λS) (4)

Here bp and cp represent the unobserved state sequence and
the unobserved mixture component labels corresponding to the
phoneme p in the observation sequence O respectively.

The joint probability of observing sequencesO, b and c can
be written as

Pr(O, p, bp, cp|Ĥ, λS)

=
∏

n ab(n−1),b(n)wb(n),c(n)

·N(O(n);μ
(S)
p,j,k + Ĥ(n),Σ

(S)
p,j,k) (5)

where n, a and w represent the frame, the transition probability
and the mixture weight, respectively. N(O;μ,Σ) denotes the
multivariate Gaussian distribution, and μ(S)

p,j,k andΣ
(S)
p,j,k are the

mean vector and the (diagonal) covariance matrix to mixture k
of state j in the concatenated clean speech HMM, respectively.
(4) is expanded and we focus only on the term involvingH .

Q(Ĥ|H)

= −∑
p

∑
j

∑
k

∑
n γp,j,k(n)

−∑D
d=1

{
1
2
log(2π)Dσ

(S)2

p,j,k,d

+
(O(d;n)−μ

(S)
p,j,k,d

−Ĥ(d;n))2

2σ
(S)2

p,j,k,d

}
(6)

γp,j,k(n) = Pr(O(n), p, j, k|λS) (7)

Here D is the dimension of the observation vector On, and
μ
(S)
p,j,k,d and σ

(S)2

p,j,k,d are the d-th mean value and the d-th di-
agonal variance value, respectively.
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Figure 3: Experimental room environment and the loudspeaker
position
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Figure 4: Photo of the recording environment and the head ori-
entation of the loudspeaker

The maximization step (M-step) in the EM algorithm be-
comes “max Q(Ĥ|H)”. The re-estimation formula can, there-
fore, be derived, knowing that ∂Q(Ĥ|H)/∂Ĥ = 0 as

Ĥ(d;n) =

∑
p

∑
j

∑
k γp,j,k(n)

O(d;n)−μ
(S)
p,j,k,d

σ
(S)2

p,j,k,d∑
p

∑
j

∑
k

γp,j,k(n)

σ
(S)2

p,j,k,d

. (8)

3. Experiments
3.1. Experiment Conditions

The proposed method was evaluated in a real room environ-
ment. Figure 3 shows the experimental room environment and
the position of the loudspeaker. Figure 4 depicts the recording
environment and shows the head orientation of the loudspeaker.
The size of the recording room was about 6.3 m × 3.2 m ×
2.8 m (width × depth × height). The reverberation time was
about 350 msec, and the distance to the microphone was about
2 m. The speech signal was recorded by two microphones, and
the signal recorded by one of the microphones was used for
the proposed method. The microphone was a directional type
(SONY ECM-66B). There were three positions (40, 90 and 130
degrees) and three head orientations (0, 45 and 90 degrees) for
the loudspeaker for training and testing. A total of 9 pairs (3
× 3) for position and head orientation exist. One loudspeaker
(BOSE Mediamate II) was used for each position and head ori-
entation.

The speech signal was sampled at 12 kHz and windowed
with a 32-msec Hamming window every 8 msec. The exper-
iment utilized the speech data uttered by a male in the ATR
Japanese speech database. The clean speech HMM (speaker-
dependent model) was trained using 2,620 words, and each

Table 1: Localization accuracy of the proposed method and the
median of the output direction from CSP analysis for each po-
sition.

Position 40 deg. 90 deg. 130 deg. average
Accuracy [%] 83.6 93.5 98.3 91.8
CSP [deg.] 40.9 90 131.4 -
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Figure 5: Mean values of the acoustic transfer function for each
position fixing the head orientation at 0 deg.

phoneme HMM has 3 states and 32 Gaussian mixture compo-
nents. The number of data used to train the acoustic transfer
function for one pair of the position and head orientation was 50
words. The test data for one pair consisted of 166 words. The
estimation accuracy was calculated by 4-fold cross-validation.
16-order MFCCs (Mel-Frequency Cepstral Coefficients) were
used as feature vectors. The speech data for training the clean
speech model, training the acoustic transfer function, and test-
ing were spoken by the same person but had different text utter-
ances, respectively. We used SVM light for the Support Vector
Machine with the RBF (Gaussian) kernel. Then, SVM was ex-
tended using the one-vs-rest method in order to carry out multi-
class classification. For each test data (word), the position and
head orientation are classified by the multi-class SVM.

3.2. Experimental Results

At first, we confirmed the performance of the proposed method
in the talker localization, fixing the head orientation of the loud-
speaker at 0 degrees. Table 1 shows the localization accuracy of
our proposed method and the median of the output direction
from CSP (Cross-power Spectrum Phase) analysis [6] for each
position of the loudspeaker. CSP analysis is also known as Gen-
eralized Cross-Correlation PHAse Transform (GCC-PHAT). In
CSP analysis, the time delay between the signals observed by
the two microphones was estimated by searching the peak of
the CSP coefficient.

As shown in this table, there is a difference in the localiza-
tion accuracy between the positions of the speaker, while the
CSP analysis was able to estimate the direction stably. Fig-
ure 5 shows the mean values of the acoustic transfer function
for each word at three positions. The acoustic transfer func-
tions are calculated by (2), and the total number of dimensions
was reduced to two using Principal Component Analysis. As
shown in this figure, the acoustic transfer function distribution
for 130 degrees is easily discriminated. On the other hand, it
is relatively difficult to discriminate the distribution for 40 de-
grees.

Next, we evaluated the performance of the proposed
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Table 2: Head orientation estimation accuracies for each fixed
position (pos.), where the number of head orientations (ori.) is
two (0 and 90 deg.) and three (0, 45 and 90 deg.)

pos. \ ori. 0 deg. 90 deg. average
40 deg. 81.6 84.3 83.0
90 deg. 96.1 92.6 94.4
130 deg. 94.4 93.7 94.1
average 90.7 90.2 90.5

pos. \ ori. 0 deg. 45 deg. 90 deg. average
40 deg. 73.0 20.0 86.7 59.9
90 deg. 97.1 10.2 90.1 65.8
130 deg. 82.8 33.7 97.1 71.2
average 84.3 21.3 91.3 65.7
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Figure 6: Mean values of the acoustic transfer function for each
head orientation fixing the location at 90 deg.

method for the talker’s head orientation, fixing the position of
the loudspeaker for each location. Table 2 shows the head ori-
entation estimation accuracies, where the number of head ori-
entations is two (0 and 90 deg.) and three (0, 45 and 90 deg.).
As shown in these tables, the proposed method was able to esti-
mate the head orientation with an accuracy of over 84 %, when
the head orientation was 0 degrees or 90 degrees. However, it is
difficult for the proposed method to estimate a head orientation
of 45 degrees. Figure 6 shows the mean values of the acoustic
transfer function for each head orientation, where the speaker
location is fixed at 90 degrees. As shown in this figure, the dif-
ference of the distributions for every head orientation is not as
clear as that for location, and the distribution for 45 degrees, in
particular, is difficult to discriminate from the other head orien-
tations. Table 3 shows the median of the output direction from
CSP analysis for each position and the head orientation. These
results show that the difference in the head orientation slightly
influenced the results of the CSP algorithm.

Finally, we evaluated the performance of the proposed
method for both talker localization and head orientation. Ta-
ble 4 shows the localization and head orientation estimation ac-
curacy, where the number of head orientations is two and three.
As shown these tables, there is also a difference in the accuracy
between positions of the speaker and the accuracy for the head
orientation of 45 degrees is also low. However, the proposed
method was able to estimate the location and head orientation
with the averaged accuracy of about 80 %, where the number
of head orientations was two, and 60 %, where the number was
three.

Table 3: The median of the output direction from CSP analysis
for each position and the head orientation.

pos. \ ori. 0 deg. 45 deg. 90 deg.
40 deg. 40.9 40.9 40.9
90 deg. 90 90 90
130 deg. 131.4 131.4 100.9

Table 4: Localization and head orientation estimation accuracy,
where the number of head orientations is two (0 and 90 deg.)
and three (0, 45 and 90 deg.)

pos. \ ori. 0 deg. 90 deg. average
40 deg. 48.6 70.8 59.7
90 deg. 87.2 93.4 90.3
130 deg. 95.0 84.5 89.8
average 77.0 82.9 79.9

pos. \ ori. 0 deg. 45 deg. 90 deg. average
40 deg. 44.3 15.7 68.2 42.7
90 deg. 83.7 29.8 84.9 66.2
130 deg. 76.8 50.8 87.5 71.7
average 68.3 32.1 80.2 60.2

4. Conclusions
This paper has described a talker localization and head orienta-
tion estimation method using a single microphone based on dis-
crimination of the acoustic transfer function. The sequence of
the acoustic transfer function is estimated by phoneme HMMs
of clean speech. The experiment results in a real room environ-
ment confirmed its effectiveness for location and head orienta-
tion estimation tasks. But the localization accuracy decreases as
the number of training positions or head orientations increases.
Therefore, we will research the optimal modeling of the rever-
berant speech and also the feature vector that retains useful in-
formation to discriminate both the acoustic transfer function for
each position and head orientation. Future work will include
efforts to compare our results with other published works using
a network of microphone arrays.
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