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1 Introduction

Non-invasive measurements using magnetoen-
cephalography (MEG) have recently been used to
study how stimulus features are processed in the
human brain. In particular, because neural elec-
tric activity of the brain associated with speech and
language stimuli happens in a time frame of mil-
liseconds, the high temporal resolution of MEG is
required for measuring rapid changes in brain activ-
ity during speech perception. Research carried out
with MEG has reported left hemisphere dominance
for processing of vowels in right-handed subjects [1],
and the prominent N1m wave of the auditory-evoked
field has been shown to exhibit sensitivity to a vari-
ety of acoustic attributes of the speech signal [2], as
well.
Recently, application of pattern recognition meth-

ods to neuromagnetic responses has created much
interest, and progress has been made through the
use of machine learning, such as support vector ma-
chines (SVMs) [3, 4]. SVMs are efficient tools for
automatic recognition, but neuroscience research re-
quires not only classification tools (that have high
accuracy) but also analysis tools that can locate
both the dominant area of the brain, showing strong
activity related to speech and language, and the sig-
nificant time frame, exhibiting this increased brain
activity.
In this paper, we present a new weighting method

for the AdaBoost algorithm, where the weight is as-
sociated with each MEG sensor. In our approach,
AdaBoost was applied to MEG responses or am-
plitudes, to localize brain areas that contribute to
the accurate decoding of vowels. Sixty-one MEG
amplitudes, each calculated from each of 61 pairs
of MEG sensors (in total 122 MEG sensors), con-
stituting a 61-dimensional feature vector, are sepa-
rately weighted; each weight value calculated by Ad-
aBoost indicates how useful each MEG sensor pair
is for classifying the MEG responses to vowel recog-
nition. To identify the MEG sensors or brain areas
important for vowel recognition, the weights were
averaged across subjects.

2 Recording of MEG Responses to
Vowels

Four right-handed volunteers were recruited as
subjects after obtaining consent forms from them.
All were native Japanese speakers with normal hear-
ing. We used two speech sounds (Japanese vowels),
/a/ and /o/, to explore subject’s vowel recognition
process in the brain. These 200-ms auditory stim-
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uli were delivered to the subject’s right ear through
a plastic tube with a random interstimulus interval
between 1,300 and 1,500 ms. The subject’s task was
to press a reaction key with the index finger when
the subject identified the stimulus /a/ and another
reaction key with the middle finger when the subject
identified the stimulus /o/.
Neuromagnetic data were recorded by a 122-

channel whole-scalp Neuromag MEG system in a
magnetically shielded room. The MEG signal was
sampled at 497 Hz for 1,200 ms including a 100-ms
pre-stimulus baseline; more than 80 epochs were av-
eraged to increase the S/N ratio. A low-pass filter
with a cutoff frequency of 40 Hz was used in calcu-
lating the feature vector. Epochs in which the mag-
netic signal exceeded an absolute amplitude varia-
tion of 3,000 fT/cm were discarded. Eye-movement
artifacts were also automatically removed (threshold
= 150 μV).
Feature extraction was applied to a 996-ms MEG

signal. Since the mean reaction times, however, for
/a/ and /o/ were 495.1 ms (SD = 51.7) and 497.3
ms (SD = 46.8), respectively. The MEG feature
vectors up to 450 ms were used to analyze the MEG
response pattern to localize the brain activation dur-
ing recognizing vowels.

3 Feature extraction

The signal obtained by averaging over 80 MEG
epochs was converted (using a feature extraction
transformation) into a normalized magnitude fea-
ture. The MEG signal at time t is represented by

x(t) = [x1(t), · · · , xm(t), · · · , xM (t)]T (1)

where xm(t) denotes the observation at the m-th
sensor, and the symbol M denotes the total number
of MEG sensors. The MEG magnitude was first
calculated by the following Eq. (2), which is a vector
magnitude of paired vertical and horizontal sensors.

yj(t) =
√
x2
i (t) + x2

i+1(t) (2)

where yj(t) (1 ≤ j ≤ M/2) is the magnitude feature.
Then, the magnitude feature is normalized to have
zero mean and unit variance.
The normalized MEG magnitude feature at

each MEG sensor constituted 61-dimensional MEG-
magnitude feature vector, as shown in Eq. (3), for
further analysis or classification using an AdaBoost
algorithm.

ŷ(t) = [ŷ1(t), · · · , ŷM ′(t)]T , M ′ = M/2 (3)

- 649 -

3-Q-26

日本音響学会講演論文集 2012年3月



4 MEG-Sensor Weighting Based on
AdaBoost

“Boosting” is a technique in which a set of weak
classifiers is combined to form one high-performance
prediction rule, and AdaBoost [5] serves as an adap-
tive boosting algorithm in which the rule for com-
bining the weak classifiers adapts to the problem
and is able to yield extremely efficient classifiers.
In this paper, AdaBoost was developed to local-

ize brain areas associated with the subject’s task,
namely the accurate decoding of vowels, by assign-
ing independent weights to each MEG sensor, where
the larger the MEG-sensor weight is, the more im-
portant role the brain activity underneath the MEG-
sensor plays.
The AdaBoost algorithm uses a set of training

data, {(ŷ(1), c(1)), . . . , (ŷ(T ), c(T ))}, where ŷ(t) is
the t-th feature vector of the observed signal, and c
is a set of possible labels. For our task, we consider
just two possible labels, c = {-1, 1}, where the label,
1, means a stimulus /a/, and the label, -1, means a
stimulus /o/. Next, the training data weight for the
t-th training data is initialized to d1(t) = 1/(2p) for
c(t) = 1 and 1/(2q) for c(t) = −1. Here p is the
total frame number for the stimulus /a/, and q is
the total frame number for the stimulus /o/.
The weak learner generates a hypothesis hn: ŷ(t)

→ {-1, 1} that has a small error. In this paper,
single-level decision trees (also known as decision
stumps) are used as the base classifiers. After train-
ing the weak learner on n-th iteration, the error of
hn is calculated by

en =
∑

t:hn(y(t)) �=c(t) dn(t) (4)

Next, AdaBoost sets a parameter αn= 1/2 ·
log[(1 − en)/en]. Intuitively, αn measures the im-
portance that is assigned to hn. Then the training
data weight dn is updated.

dn+1(t) =
dn(t) exp{−αn · c(t) · hn(ŷ(t))}

∑T
t=1 dn(t) exp{−αn · c(t) · hn(ŷ(t))}

(5)

The equation (5) leads to the increase of the
training data weight for the data misclassified by
hn. Then, the weight for the feature (MEG-sensor
weight) is calculated using

wj =
∑

n αnδjn,j (6)

where δjn,j is the Kronecker’s delta, which has the
value 1 if jn is j, and 0 otherwise.

5 Analysis Results

To localize MEG sensor important for MEG ac-
tivity pattern classification using AdaBoost, which
were considered to have contributed to the process-
ing of vowel recognition, the MEG sensor weights
obtained from the AdaBoost method are displayed
on a topological plot of the scalp in Figure 1. Fig-
ure 1 shows color-coded average weights for each
MEG sensor in each latency range; more important
or more highly weighted MEG sensors for classifying
neuromagnetic responses are shown in darker colors;

-100 ~ 0 ms 0 ~ 100 ms 50 ~ 150 ms 

100 ~ 200 ms 150 ~ 250 ms 200 ~ 300 ms 

Fig. 1 MEG-sensor weighting based on AdaBoost.
There are 6 top-view circle heads with nose upward.

the black areas indicate that this area of the brain
played an important role in classification of neuro-
magnetic responses to vowel recognition. The larger
weights in the latency range, between 50 and 150 ms,
between 100 and 200 ms, and between 150 and 250
ms, are seen to be in the left language area.

6 Conclusion

We presented a new MEG-sensor weighting
method using an AdaBoost algorithm for analyzing
areas of the brain that contributed to the accurate
decoding of two vowels. The brain area covered by
the MEG sensors with the larger weight obtained by
our AdaBoost method corresponded to the language
area of the left hemisphere. As the magnetic fields
generated by brain activity are extremely weak and
usually largely contaminated by external magnetic
noises, we will have to develop a noise-robust feature
extraction method.
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