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Abstract
In this paper, we present a new approach for the speech syn-
thesis, in which speech utterances are synthesized using the
parameters of spectro-modeling function (Multiple function).
With this approach, only harmonic-parts are extracted from the
phoneme spectrum, and the time-varying spectrum correspond-
ing to the harmonics or sinusoidal components is modeled us-
ing the Multiple function. We introduce two types of the func-
tions, and present the method to estimate the parameters of each
function using the observed phoneme spectrum. In the synthe-
sis stage, speech signals are generated from the parameters of
the Multiple function. The advantage of this method is that it
only requires a few speech synthesis parameters. We discuss
the effectiveness of our proposed method through experimental
results.
Index Terms: speech synthesis, text-to-speech, multiple func-
tion, harmonic-temporal structure, EM algorithm

1. Introduction
Text-to-speech (TTS) systems, which artificially produce hu-
man voices from a text, are used for many applications, includ-
ing public address systems and speech devices for those who
have difficulty speaking clearly. Various methods of speech
synthesis technology have been proposed to date. Concatena-
tive synthesis [1, 2], one of the most widely-used speech syn-
thesis methods, is a method that synthesizes a speech signal by
selectively concatenating speech fragments. Another method
for synthesizing speech signals, Additive synthesis [3, 4], has
also been proposed. In this method, a speech signal is syn-
thesized by summing sinusoidal waves corresponding to each
harmonic at a certain rate.

Concatenative synthesis is a method that generates a speech
signal by means of appropriate concatenation of short-term-
recorded speech pieces. This method produces relatively nat-
ural speech because it uses the uncompressed recorded speech
data. It does have a problem, however, in that it might gener-
ate unnatural speech if the selected speech pieces are not se-
lected properly. Furthermore, because the Concatenative syn-
thesis method needs a large amount of speech fragment data
included in a database, an enormous amount of computational
resources, such as memory, disk space and CPU allocation, is
required.

In the Additive synthesis approach, the synthesized speech
is generated by adding sine waves of harmonic partials as for-
mant information [3, 4]. Since this method represents speech
using only a few parameters rather than all the speech signals,
fewer computational resources are needed than for the Concate-
native synthesis. The naturalness of the synthesized speech sig-
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Figure 1: Modeling of an envelope shape in a phoneme spec-
trum. Only harmonic-parts are extracted, and replaced by a
Multiple function.

nals, however, tends to be inferior to that produced by the Con-
catenative approach.

Based on the Additive synthesis approach, we propose a
speech synthesis technique in which the time-varying power
(intensity) spectrum of each harmonic for each individual
phoneme is approximated by a Multiple function (see section 2),
and then the output speech signal is given from the parameters
of the Multiple function (Fig. 1). Only harmonic-parts are ex-
tracted from the phoneme spectrum, and the harmonic-temporal
structure of speech utterances is modeled using the Multiple
function (non-harmonic partials in voiced speech are not mod-
eled).

2. Multiple function
In this paper we propose a method of speech synthesis, in which
the harmonic-temporal shape of the utterance spectrum is ap-
proximated to a Multiple function. We consider that the Multi-
ple function best models an envelope shape given the following
constraints:

• When the discrete-frequency and continuous-time do-
main are used.

• When the integral value over the whole time/frequency
space equals 1.

• When the parameters are estimated by an EM algorithm
or Maximum Likelihood.

Satisfying these conditions, we define the Multiple function as
in Eq. (1). This function can express the harmonic-temporal
spectral structure as a whole, by preparing individual amplitude
functions corresponding to each harmonic.

q(t, n;Θ,π) =
∑
n

πn pn(t; Θn) (1)

where t is a variable of time, and n is an index of harmonic.
p(t;Θ) means Partial function, which is the time-varying am-

Copyright © 2010 ISCA 26-30 September 2010, Makuhari, Chiba, Japan

INTERSPEECH 2010

945



plitude function to a harmonic, and satisfies

∀n,
∫

pn(t)dt = 1. (2)

Multiple function has two kinds of parameters: Θ and π.
Θ implies the parameter matrix of the Partial function, and π
represents the multiply rate vector within the Partial functions.
π satisfies ∑

n

πn = 1, ∀n, πn > 0, (3)

and its parameters can be estimated as follows:

κn =

∫
gn(t)dt∫
g1(t)dt

(4)

πn =
κn∑
m κm

(5)

where κn means the intensity ratio between the 1st harmonic
and the n-th harmonic. gn(t) is the observed intensity value of
the n-th harmonic.

In this paper, we introduce two types of the Multiple func-
tions: Multi-Gaussian Mixture Model and Multi-Beta Mixture
Model. Since both of these functions are based on mixture mod-
els, it is expected that the two can represent complicated shapes,
such as the utterance spectrum, which have multiple peaks in
the time domain. We will describe the models in more detail in
following subsections.

2.1. Multi-Gaussian Mixture Model

We define here Multi-Gaussian Mixture Model (MGMM) as
one of the Multiple functions, whose Partial function is as a
Gaussian Mixture Model (GMM). The MGMM is formulated
as in Eq. (1) and (6).

pn(t; νn, μn, σn) =
∑
l

νn,l
1√

2πσn,l

exp

{
− (t− μn,l)

2

2σ2
n,l

}

(6)
where

∀n,
∑
l

νn,l = 1, ∀n, l, νn,l > 0. (7)

νn,l is mixing rate, and l represents an index of mixture compo-
nents.

Next, we derive the update rules for parameters νn, μn and
σn in Eq. (6). To achieve this, we introduce Kullback-Leibler
(KL) divergence for the evaluation function J . The KL diver-
gence is a measure of the difference between two distributions.
We define the evaluation function J as below:

J =
∑
n

Jn =
∑
n

∫ ∞

−∞
gn(t) log

gn(t)

pn(t)
dt. (8)

We also define un,l and vn,l as

un,l =
νn,l√
2πσn,l

exp

{
− (t− μn,l)

2

2σ2
n,l

}
(9)

vn,l =

∫ ∞

−∞

gn(t)un,l

pn(t)
dt (10)

respectively.
J in Eq. (8) is the KL divergence between MGMM and the

observed spectrum shape. The smaller the J is, the closer the
MGMM and the observed spectrum of a speech signal are.

Using Lagrange multipliers, we obtain update rules (11),
(12), and (13) for MGMM parameters, which minimize the
evaluation function J under condition (7).

ν̂n,l =
vn,l∑
m vn,m

(11)

μ̂n,l =

∫∞
−∞

t·gn(t)un,l

pn(t)
dt

vn,l
(12)

σ̂n,l =

√√√√∫∞−∞ (t−μn,l)
2gn(t)un,l

pn(t)
dt

vn,l
(13)

Thus, updating parameters as in from (9) to (13) iteratively, the
parameters of MGMM can be optimized gradually.

2.2. Multi-Beta Mixture Model

Next, we define Multi-Beta Mixture Model as one of the Mul-
tiple functions, where its Partial function is as a Beta Mixture
Model (BMM). The Multiple function can be formulated as in
Eq. (1) and (14).

pn(t; νn, αn, βn) =
∑
l

νn,l
1

B(αn,l, βn,l)
tαn,l−1(1−t)βn,l−1

(14)
where B(α, β) is a Beta function. Eq. (14) is definitional for-
mulation for BMM, and its parameters can be estimated by EM
algorithm [7]. The update rules of the parameters in M-step are
as follows. (For brevity, we omit the description of the details
of the derivation of the update rules.)

ν̂n,l =

∑Kn
i=1 z

∗
n,l,i

Kn
(15)

α̂n,l = Ψ−1

(
1

Kn

Kn∑
i=1

log

(
Xn,i

1−Xn,i

)
+Ψ(βn,l)

)
(16)

β̂n,l = Ψ−1

(
1

Kn

Kn∑
i=1

log

(
1−Xn,i

Xn,i

)
+Ψ(αn,l)

)
(17)

where Ψ(x) is the digamma function, and Ψ−1(x) is the
inverse-digamma function. All Xn,i are samples, obtained from
the random generation along the observed amplitude spectrum
of harmonic n. Kn is the number of samples Xn,i.

z∗n,l,i in Eq. (15) is the latent indicator variable [7]. This
variable means the probability of the occurrence of a sample
Xn,i from the l-th component for the n-th BMM. z∗n,l,i can be
updated in E-step as follows;

z∗n,l,i =
ν̂n,lfn,l(Xn,i|α̂n,l, β̂n,l)∑
j ν̂n,jfn,j(Xn,i|α̂n,j , β̂n,j)

(18)

fn,l(Xn,i|α̂n,l, β̂n,l) =
X

α̂n,l−1

n,i (1−Xn,i)
β̂n,l−1

B(α̂n,l, β̂n,l)
. (19)

By adequately repeating calculations for the E-step and M-
step updates as mentioned above, the parameters of MBMM
Θ = {νn, αn, βn} can be estimated.

3. Speech synthesis from the parameters
In this section, we discuss the technique for synthesizing speech
sounds from Multiple function parameters. The phoneme
signals can be synthesized using the Additive synthesis ap-
proach [5].
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In the Additive synthesis approach, the synthesized signal
s(t) can be formulated as

s(t) =
∑
n

an(t) sin

(
2πfnt

T

)
(20)

where fn is the frequency of the n-th harmonic, and T is the
voice activity term. Each harmonic of Multiple function has its
own frequency fn

fn = n · fpitch (21)

where fpitch denotes the fundamental pitch of the speech
sound.

Setting an(t) as in Eq. (22), it is possible to synthesize a
speech signal from the pre-learned model (Multiple function’s)
parameters.

an(t) = πn · pn( t
T
; Θn) (22)

where pn(t) is Partial function.

4. Experiments
4.1. Experimental setup

To evaluate the performance of our approach, we carried out an
experiment in which we attempted to synthesize 5 long vow-
els, /a:/, /e:/, /i:/, /o:/ and /u:/, from their own Multiple func-
tions (MGMM and MBMM). The training set for the experi-
ment was recorded by a woman reader at a sampling rate of
22.05 kHz. First, we clipped the 5 phonemes from the record-
ings using Voice activity detection (VAD) [8]. Employing the
PSOLA method [9], we forced the pitch of the signals to be set
to 261 Hz over a given period. Using the normalized signals,
we calculated each parameter of the Multiple functions for each
phoneme. Since our emphasis was on the synthesis technique
itself (matching the observed harmonic-temporal spectrum to
Multiple function), we evaluated the efficiency of our method
of synthesizing phoneme signals as the basic experiment, with-
out synthesizing speech signals from a text using a text analysis
technique.

The experimental conditions for both models (MGMM and
MBMM) are shown in Table 1. B1 and B2 in Table 1 both
refer to MBMM conditions, and G1, G2 and G3 are MGMM
conditions. These conditions are different from the others in
terms of the number of iterations or the number of mixtures.
We set the number of harmonics for spectrum fitting to 20 in
each model. In conditions B1 and B2, the number of Kn was
set to 2,000 for all n.

As a point of reference, we also compared the result of
Multi-Beta Distribution (MBD) condition (A1), whose Partial
function is Beta distribution (same as in the case l = 1 in
MBMM).

4.2. Results and discussion

Fig. 2 shows the results of fitting the harmonic-temporal spec-
trum of phoneme /e:/ to Multiple functions. Middle and bottom
in the figure are the results of MGMM (G3) and MBMM (B2),
respectively. We found that the harmonic-temporal structure of
input phoneme signals is well-represented by both MGMM and
MBMM: intensity-ratios between fundamental and each har-
monic, rise and decay of the sound spectrum, or attack time
and duration time of each spectral peak.

For clarity, we show the same results in Fig. 3. This fig-
ure indicates the comparison of the 2nd harmonic of phoneme

Table 1: Experimental conditions.

Model Properties
A1 MBD -
G1 MGMM 2 mixtures, 20 iterations
G2 MGMM 4 mixtures, 100 iterations
G3 MGMM 8 mixtures, 100 iterations
B1 MBMM 2 mixtures, 200 iterations
B2 MBMM 4 mixtures, 200 iterations

Figure 2: Experimental results. Observed spectrum envelopes
of the phoneme /e:/ (top), modeling result of MGMM, G3 (mid-
dle) and result using MBMM, B2 (bottom).

/e:/. The vertical and horizontal axis in the figure indicate in-
tensity and time, respectively. The shape of the time-varying
spectrum of each model is compared to ‘Base’ (a), observed
spectrum. We can see that the MBD (b), not being a mixture
model, does not have an ability to represent the structure with
more than 2 peaks, so MBD is not suitable for speech utter-
ances. Meanwhile, MGMM or MBMM, especially G3 (d) or B2
(f), represents the ‘Base’ spectrum well. Comparing within the
same type of Multiple functions, the more mixtures the model
has, the more well-fitting to ‘Base’ the model is, and G3 or B2
is better than G2 (c) or B1 (e), respectively. When we com-
pare different types of mixture models with the same number of
mixtures, MBMM is more suitable to ‘Base’ than MGMM (see
G2 and B2). We attribute this to the following: MBMM and
MGMM are derived from Beta distribution and Gaussian distri-
bution, respectively. Curvature of the Beta distribution tends
to be larger than those of the Gaussian distribution in many
cases [6]. Therefore, MBMM can approximate the spectrum
shape, shown in time 0.3 to 0.7 in the figure. The above argu-
ments also apply to the other phonemes.
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(e) MBMM (B1)

(c) MGMM (G2)

Figure 3: Comparison of spectrum-modeling function shapes
(two-dimensional view).
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Figure 4: Comparison of DP distances.

Fig. 4 shows the comparison results among tests based on
Dynamic Programming (DP) distance to original spectrum, the
sum of the DP distances between temporal shape of each har-
monic and the observed harmonic spectrum. The small value
implies that the model shape is close to the original one. We
can see that the more mixtures Multiple function has, the closer
to the original spectral structure (G3 to G2, or B2 to B1, etc)
it is. In the case of the same number of mixtures, MBMM is
more suitable for representing a harmonic-temporal spectrum
than MGMM is.

We chose a mean opinion score (MOS) evaluation as a pref-
erence test. The listening test was performed using 3 systems:
Additive synthesis with observed harmonic-temporal spectrum
(consisting of only harmonic partials with no phase; we call it
the baseline), MGMM (G3), and MBMM (B2). Fifteen listen-
ers participated in the test. Each listener was asked to rate the
naturalness of each utterance on a scale of 1 (the worst) to 5
(the best; that is, raw data). The results of the MOS test are
shown in Fig. 5. We see that MGMM or MBMM can produce
acoustically more natural utterances than the baseline of Addi-
tive synthesis. We believe that this is because some noise or
very small fluctuations occur in the recordings, and the approx-
imation with MGMM or MBMM can ignore them.

Finally, we illustrate the parameters of each model in Ta-
ble 2. The number of parameters γmgmm, γmbmm for MGMM
and MBMM, respectively, is given by

γmgmm = γmbmm = ρ · (3 · λ+ 1) (23)

where ρ is the number of harmonics (here, 20), and λ is the
number of mixtures. We see that the number of required pa-
rameters for the Multiple function is much less than those of
conventional Additive synthesis.
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Figure 5: MOS listening test result.

Table 2: Number of parameters for each model.

Base G1 G2 G3 B1 B2
No. of parameters 21,240 140 260 500 140 260

5. Conclusion
In this paper, we proposed a method to synthesize speech ut-
terances using the Multiple function parameters. We introduced
two types of Multiple functions, MGMM and MBMM, and pre-
sented the update rules of their parameters. We conducted eval-
uation experiments under changing experimental conditions,
such as the number of iterations or mixtures. We evaluated
our approach by use of DP-based metric and MOS test from
subjective and objective points of view, respectively. Through
these experiments, we concluded that speech utterance is well-
represented by the Multiple function with only a few parame-
ters. When we consider the balance of the approximate preci-
sion and the number of parameters, MBMM is a more suitable
model for the representation of speech utterances.

In the future, we plan to improve the iteration speed in esti-
mating MBMM parameters, and devise more well-representing
models. We are also planning to fit pitch contour or other
phonemes to Multiple function and synthesize more general
speech sounds, taking these points into consideration.
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