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ABSTRACT

This paper presents a sound source (talker) localization method
using only a single microphone, where a HMM (Hidden Markov
Model) of clean speech is introduced to estimate the acoustic trans-
fer function from a user’s position. The new method is able to carry
out this estimation without measuring impulse responses. The frame
sequence of the acoustic transfer function is estimated by maxi-
mizing the likelihood of training data uttered from a given position,
where the cepstral parameters are used to effectively represent useful
clean speech. Using the estimated frame sequence data, the GMM
(Gaussian Mixture Model) of the acoustic transfer function is cre-
ated to deal with the influence of a room impulse response. Then,
for each test data set, we find a maximum-likelihood GMM from
among the estimated GMMs corresponding to each position. The ef-
fectiveness of this method has been confirmed by talker localization
experiments performed in a room environment.

Index Terms— single channel, talker localization, acoustic
transfer function, maximum likelihood

1. INTRODUCTION

Many systems using microphone arrays have been tried in order to
localize sound sources. Conventional techniques, such as MUSIC,
CSP, and so on (e.g., [1, 2]), use simultaneous phase information
from microphone arrays to estimate the direction of the arriving sig-
nal. There have also been studies on binaural source localization
based on interaural differences, such as interaural level difference
and interaural time difference (e.g., [3, 4]). However, microphone-
array-based systems may not be suitable in some cases because of
their size and cost. Therefore, single-channel techniques are of in-
terest, especially in actual car environments or small-device-based
scenarios.

The problem of single-microphone source separation is one of
the most challenging scenarios in the field of signal processing, and
some techniques have been described (e.g., [5, 6]). In our previous
work [7], we discussed a sound source localization method using
only a single microphone. In that report, the acoustic transfer func-
tion was estimated from an observed (reverberant) speech using a
clean speech model without texts of the user’s utterance, where a
GMM (Gaussian Mixture Model) was used to model the features of
the clean speech. Using GMM separation, it is possible to estimate
the acoustic transfer function using some adaptation data (only sev-
eral words) uttered from a given position. For this reason, measure-
ment of impulse responses is not required. Because the character-
istics of the acoustic transfer function depend on each position, the
obtained acoustic transfer function can be used to localize the talker.

In this paper, we will discuss a new talker localization method
using only a single microphone, where a HMM (Hidden Markov
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Model) of clean speech is used to estimate the acoustic transfer func-
tion from a user’s position. Unlike GMM separation of our previous
work, HMM separation requires texts of a user’s utterances in order
to estimate the acoustic transfer function. Therefore, the phoneme
sequence of the observed (reverberant) signal is recognized first, and
the recognition result is used as the text information to estimate the
acoustic transfer function. This estimation is performed in the cep-
stral domain employing an approach based upon maximum likeli-
hood. This is possible because the cepstral parameters are an ef-
fective representation for retaining useful clean speech information.
The results of our talker-localization experiments show the effective-
ness of our method.

2. ESTIMATION OF THE ACOUSTIC TRANSFER
FUNCTION

2.1. System Overview

Figure 1 shows the training process for the acoustic transfer func-
tion GMM. First, we record the reverberant speech data 09 from
each position € in order to build the GMM of the acoustic trans-
fer function for 6. Next, the phoneme sequence of the reverberant
speech data is recognized by using each phoneme HMM of clean
speech data. Using the recognition result, the phoneme HMMs are
concatenated. And the frame sequence of the acoustic transfer func-
tion H® is estimated from the reverberant speech oY using the
concatenated HMM. Using the estimated frame sequence data of the
acoustic transfer function H (9), the acoustic transfer function GMM
for each position )\g) is trained.

Figure 2 shows the talker localization process. For test data, the
talker position 0 is estimated based on discrimination of the acoustic
transfer function, where the GMMs of the acoustic transfer function
are used. First, the frame sequence of the acoustic transfer function
H is estimated from the test data (any utterance) using the clean-
speech acoustic model. Then, from among the GMM:s corresponding
to each position, we find a GMM having the maximum-likelihood in
regard to H.

2.1.1. Cepstrum Representation of Reverberant Speech

The reverberant speech signal, o(t), in a room environment is gen-
erally considered as the convolution of clean speech and acoustic
transfer function. The spectral analysis of the acoustic modeling is
generally carried out using short-term windowing. Therefore, the
spectrum of the reverberant speech signal is approximately repre-
sented by O(w;n) ~ S(w;n) - H(w;n), where the length of the
acoustic transfer function may be greater than that of the window.
Here O(w;n), S(w;n), and H(w;n) are the short-term linear spec-
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Fig. 1. Training process for the acoustic transfer function GMM

tra of the reverberant speech signal, clean speech signal, and the
acoustic transfer function in the analysis window n, respectively.

Cepstral parameters are an effective representation to retain use-
ful speech information in speech recognition. Therefore, we use the
cepstrum for acoustic modeling necessary to estimate the acoustic
transfer function. The cepstrum of the reverberant speech is given
by the inverse Fourier transform of the log spectrum.

Ocep(d;n) = Secep(d;n) + Heep(d;n) (1)

where Ocep, Scep, and H.p, are cepstra for the reverberant speech
signal, clean speech signal, and acoustic transfer function, respec-
tively. As shown in equation (1), if O and .S are observed, H can be
obtained by

Heep(d;n) & Ocep(d;n) — Seep(d;n). 2)

However, S cannot be observed actually. Therefore, H is estimated
by maximizing the likelihood (ML) of reverberant speech using
clean-speech HMM.

2.2. Maximum-Likelihood-Based Parameter Estimation

This section presents a new method for estimating the GMM (Gaus-
sian Mixture Model) of the acoustic transfer function. The estima-
tion is implemented by maximizing the likelihood of the training
data from a user’s position. In this paper, we introduce the utiliza-
tion of the GMM of the acoustic transfer function based on the ML
estimation approach to deal with a room impulse response.

The frame sequence of the acoustic transfer function in (2) is
estimated in an ML manner by using the expectation maximization
(EM) algorithm, which maximizes the likelihood of the observed
speech:

H = argmax Pr(O|H, \g). 3)
H
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Fig. 2. Estimation of talker localization based on discrimination of
the acoustic transfer function

Here, A5 denotes the set of concatenated clean speech HMM param-
eters, while the suffix S represents the clean speech in the cepstral
domain. The EM algorithm is a two-step iterative procedure. In the
first step, called the expectation step, the following auxiliary func-
tion is computed.

Q(H|H)

Ellog Pr(O, p, by, ¢p| H, As)| H, As]

_ Pr(O,p,by,cp|H,Ag)

- ZP pr Zcp W

'lOgPr(07p7 bP7CP|f{7 )‘S) (4)

Here b, and c,, represent the unobserved state sequence and the un-
observed mixture component labels corresponding to the phoneme p
in the observation sequence O respectively.

The joint probability of observing sequences O, b and ¢ can be
calculated as

Pr(O, p, bp, cp\fl, As)
= L, @b, (n—1).6, () We, (n) Pr(O(n),p|H,Xs)  (5)
where n, a and w represent the frame, the transition probability and
the mixture weight, respectively. Since we consider the acoustic
transfer function as additive noise in the cepstral domain, the mean
to mixture k of state j in the model Ao is derived by adding the
acoustic transfer function. Therefore, (5) can be written as
PI‘(O7p7 bP: CP|H3 >\S)
= Hn ab(n—l),b(n)wb(n),(:(n)
s o s
NOn); i)+ Hn), 28 (©6)
where N (O; u, X') denotes the multivariate Gaussian distribution. It
is straightforward to derive that [8]
Q(H|H)
Zp Zz Zj Zn
Pr(O(n),p,bp(n) = j,bp(n — 1) = i[As) log ap,i,;
+ Zp Z]' Zk Zn
Pr(O(n),p,bp(n) = j, cp(c) = k|As) logwy,; k
+ Zp Zj Zk En
Pr(0O(n), p,bp(n) = j, cp(n) = k|As)
dog N(O(n); ul) , + H(n), 57,) ™

p.J:k



Here ué ]) pand 2 (=) ». . are the mean vector and the (diagonal) covari-
ance matrix in the concatenated clean speech HMM, respectively.
It is possible to train those parameters by using a clean speech
database.

Next, we focus only on the term involving H.

Q(H|H)
= - Zp Zj 2ok 2o Yroiik(N)

D S)?
=21 {% IOg(Qﬂ')D‘T;J{k,d

(O(dsm)—pul®) ,  —H(din))?
+ E ®)
Op.j.kd
Yp.g.k(n) = Pr(O(n), p, j, k| \s) Q)

Here D is the dimension of the observation vector O,,, and ,u;Sj) kd

and O'( ) k,a are the d-th mean value and the d-th diagonal variance
value, respectwely

The maximization step (M-step) in the EM algorithm becomes
“max Q(H|H)”. The re-estimation formula can, therefore, be de-
rived, knowing that Q(H|H)/OH = 0 as

O(d;n) u, )
ZPZ]' 2ok Ypgk (1 )Tf]kd
Thgkd (10)
Y (n)
2 205 Lk

p.dk.d

H(d;n) =

After calculating the frame sequence data of the acoustic trans-
fer function for all training data (several words), the GMM for the
acoustic transfer function is created. The m-th mean vector and co-
variance matrix in the acoustic transfer function GMM ()\g)) for the
direction (location) 6 can be represented using the term H,, as fol-
lows:

H n n
IUJEC ) Z ’Yk(-\skH( ) (11)

(H) (H)

s — 5 )(H(n) -

Here n(*) denotes the frame number for v-th training data.

Finally, using the estimated GMM of the acoustic transfer func-
tion, the estimation of talker localization is handled in an ML frame-
work:

0= argmaxPr(];H)\g)), (13)
0

where )\(}?) denotes the estimated GMM for € direction (location),
and a GMM having the maximum-likelihood is found for each test
data from among the estimated GMMs corresponding to each posi-
tion.

3. EXPERIMENTS

3.1. Experimental Conditions

The new talker localization method was evaluated a simulated re-
verberant environment. The reverberant speech was simulated by a
linear convolution of clean speech and impulse response. The im-
pulse response was taken from the RWCP database in real acous-
tical environments [9]. The reverberation time was 300 msec, and
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Fig. 3. Experiment room environment for simulation

the distance to the microphone was about 2 meters. The size of the
recording room was about 6.7 mx4.2 m (widthxdepth). Figure 3
shows the experimental room environment.

The speech signal was sampled at 12 kHz and windowed with a
32-msec Hamming window every 8 msec. The experiment utilized
the speech data of five males in the ATR Japanese speech database.
The clean speech HMM (speaker-dependent model) was trained us-
ing 2,620 words and each phoneme HMM has 3 states and 32 Gaus-
sian mixture components. The test data for one location consisted of
1,000 words, and 16-order MFCCs (Mel-Frequency Cepstral Coef-
ficients) were used as feature vectors. The total number of test data
for one location was 1,000 (words) x 5 (males). The speech data for
training the clean speech model, training the acoustic transfer func-
tion and testing were spoken by the same speakers but had different
text utterances respectively. The speaker’s position for training and
testing consisted of three positions (30, 90, and 130 degrees), five
positions (10, 50, 90, 130, and 170 degrees), seven positions (30,
50, 70, ..., 130 and 150 degrees) and nine positions (10, 30, 50, 70,

., 150, and 170 degrees). Then, for each set of test data, we found
a GMM having the maximum-likelihood from among those GMMs
corresponding to each position. These experiments were carried out
for each speaker, and the localization accuracy was averaged by five
talkers.

3.2. Experimental Results

The proposed method was compared with the other two method.
One is the our previous method using GMM of the acoustic trans-
fer function separated by the clean speech GMM. In this method,
clean speech GMM was trained using the same clean speech data as
that of the proposed method, and has 64 Gaussian mixture compo-
nents. Another one is a simple way using the GMM of the observed
speech without the separation of the acoustic transfer function. The
GMM of the observed speech includes not only the acoustic transfer
function but also clean speech, which is meaningless information for
sound source localization. Then, the GMM of the acoustic transfer
function and the observed speech in each method was trained using
50 words and has 16 Gaussian mixture components.

As shown in Figure 4, the use of the GMM of the acoustic
transfer function showed higher accuracies than that of the observed
speech. This is because the GMM of the acoustic transfer func-
tion may not be affected greatly by the characteristics of the clean
speech (phoneme). Also, the separation using the clean speech
HMM showed higher accuracies than that using the clean speech
GMM. Table 1 shows the mean square error (MSE) of the separated
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Table 1. Mean square error of the separated acoustic transfer func-
tion

HMM
2096.14

GMM
2264.33

MSE

acoustic transfer function estimated by our proposed method and
precious method, where the acoustic transfer function calculated by
(2) using the true clean speech data is used as the ground truth. As
shown in this table, the clean speech HMM can estimate the acoustic
transfer function more correctly than clean speech GMM.

Also, each localization accuracy decreases as the number of
training positions increases. Figure 5 and Figure 6 show the mean
acoustic transfer function values for three and seven positions, re-
spectively. The acoustic transfer functions are calculated by (2). As
shown in these figures, when the number of position is three, the
distribution of the acoustic transfer function for each position can
be discriminated relatively-easily. However, when the number of
position is seven, it is difficult to discriminate the distribution for
each position. Therefore, when the the number of training posi-
tions increases, it is difficult to estimate the talker’s position by this
method.

4. CONCLUSION

This paper has described a voice (talker) localization method using
a single microphone. The sequence of the acoustic transfer func-
tion is estimated by HMM (Hidden Markov Model) of clean speech.
The experiment results in a room environment confirmed its effec-
tiveness for location estimation tasks. But the localization accuracy
decreases as the number of training positions increases. Therefore,
we will research the feature vector retaining useful information to
discriminate the acoustic transfer function for each position. In ad-
dition, not only the position of speaker but also various factors (e.g.,
orientation of the speaker) affect the acoustic transfer function. Fu-
ture work will include efforts to investigate the estimation when the
conditions other than speaker position change.
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