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ABSTRACT

Random projection has been suggested as a means of dimension-
ality reduction, where the original data are projected onto a sub-
space using a random matrix. It represents a computationally sim-
ple method that approximately preserves the Euclidean distance of
any two points through the projection. Moreover, as we are able to
produce various random matrices, there may be some possibility of
finding a random matrix that gives a better speech recognition accu-
racy among these random matrices. In this paper, we investigate the
feasibility of random projection for speech feature extraction. To ob-
tain an optimal result from among many (infinite) random matrices, a
vote-based random-projection combination is introduced in this pa-
per, where ROVER combination is applied to random-projection-
based features. Its effectiveness is confirmed by word recognition
experiments.

Index Terms— feature extraction, feature combination, random
projection

1. INTRODUCTION

The goal of front-end speech processing in automatic speech recog-
nition is to obtain a projection of the speech signal to a compact
parameter space where the information related to speech content
can be extracted. In current speech recognition technology, MFCC
(Mel-Frequency Cepstrum Coefficient) is being widely used. The
feature is uniquely derived from the mel-scale filter-bank output by
DCT (Discrete Cosine Transform). There are also other methods for
feature extraction such as PCA, and those conventional features are
uniquely obtained based on certain criteria. (For example, PCA finds
a subspace that maximizes the variance in the data.) The effective-
ness of those conventional techniques has been confirmed in speech
recognition or speech enhancement experiments, but it still remains
a problem of mismatch conditions such as speaker variations, noise
variations and so on.

Random projection has been suggested as a means of dimension-
ality reduction, where a random projection matrix is used to project
data into low-dimensional spaces. In contrast to conventional tech-
niques, such as PCA, which find a subspace by optimizing certain
criteria, random projection does not use such criteria; therefore, it is
data independent. Moreover, it represents a computationally simple
and efficient method that preserves the structure of the data with-
out introducing significant distortion [1]. Goel et al. [1] have re-
ported that random projection has been applied to various types of
problems, including information retrieval (e.g. [2]), machine learn-
ing (e.g. [3, 4]), and so on. Although it is based on a simple idea,

random projection has demonstrated good performance in a number
of applications, yielding results comparable to conventional dimen-
sionality reduction techniques, such as PCA.

In this paper, we investigate the feasibility of random projec-
tion for speech feature extraction. There may be some possibility of
finding a random matrix that gives a better speech recognition accu-
racy among random matrices, since we are able to produce various
random-projection-based features (using various random matrices).
In this paper, a vote-based random-projection combination is intro-
duced in order to obtain an optimal result from among many (in-
finite) random matrices, where ROVER combination is applied to
random-projection-based features. Its effectiveness is confirmed by
word recognition experiments.

2. RANDOM ORTHOGONAL PROJECTION

This section presents a feature projection (extraction) method using
random orthogonal matrices. The main idea of random projection
arises from the Johnson-Lindenstrauss lemma; namely, if original
data are projected onto a randomly selected subspace using a ran-
dom matrix, then the distances between the data are approximately
preserved [5].

Random projection is a simple yet powerful technique, and it has
another benefit. Dasgupta [3] has reported that even if distributions
of original data are highly skewed (have ellipsoidal contours of high
eccentricity), their transformed counterparts will be more spherical.

First, we choose an n-dimensional random vector, p, and let
P(l) be the l-th n × d matrix whose columns are vectors, p(l)

1 , p(l)
2 ,

. . . , p
(l)
d . Then, an original n-dimensional vector, x, is projected

onto a d-dimensional subspace using the l-th random matrix, P(l),
where we compute a d-dimensional vector, x′, whose coordinates
are the inner products x′

1 = p
(l)
1 · x, . . . , x′

d = p
(l)
d · x.

x′ = P(l)T

x (1)

In this paper, we investigate the feasibility of random projection
for speech feature extraction. As described above, a random pro-
jection from n dimensions to d (= n) dimensions is represented by
an n × d matrix, P. It has been shown that if the random matrix
P is chosen from the standard normal distribution, with mean 0 and
variance 1, referred to as N(0, 1), then the projection preserves the
structure of the data [5]. In this paper, we use N(0, 1) for the distri-
bution of the coordinates. The random matrix, P, can be calculated
using the following algorithm [1, 3].

• Choose each entry of the matrix from an independent and
identically distributed (i.i.d.) N(0, 1) value.
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Fig. 1. An example of random matrix

• Make the orthogonal matrix by using the Gram-Schmidt al-
gorithm, and then normalize it to unit length.

The orthogonality is effective for the feature extraction because
HMMs used in speech recognition experiments consist of diagonal
covariance matrices.

3. VOTE-BASED RANDOM-PROJECTION COMBINATION

Fig. 1 shows an example of the random matrix from N(0, 1). As
shown in Fig. 1, a random matrix is composed of various random
vectors. As we can make many (infinite) random matrices from
N(0, 1), we will have to select the optimal matrix or the optimal
recognition result from among them. To obtain the optimal result, a
vote-based random-projection combination is introduced in this pa-
per, where ROVER combination [6] is applied to random-projection-
based features.

Fig. 2 shows an overview of the vote-based random-projection
combination. First, random matrices, P(l) (l = 1, ..., L), are chosen
from the standard normal distribution, with mean 0 and variance 1.
Speech features are projected using each random matrix. An acous-
tic model corresponding to each random matrix is also trained. For
the test utterance, using each acoustic model, a speech recognition
system outputs the best scoring word by itself. To obtain an optimal
result from among all the results for random projection, voting is
performed by counting the number of occurrences of the best word
for each random-projection-based feature.
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Fig. 2. Overview of vote-based random-projection combination
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RP combination
RP w/o combination
Original feature

Number of RP combination RP w/o combination
random matrices based on ROVER Max. Mean Min.

20 71.24% 69.68% 68.49% 66.57%
40 71.53% 69.79% 68.65% 66.57%
60 71.47% 70.64% 68.63% 66.57%
80 71.56% 70.64% 68.64% 66.57%
100 71.57% 70.64% 68.68% 66.57%

Fig. 3. Random projection for MFCC (The recognition rate for the
original feature is 67.28%.) The final system feature dimensionality
is 12. “Max.” “Mean” and “Min.” in the lower table denote the max,
mean, and min of the accuracies, respectively.

4. EXPERIMENTS

4.1. Experimental Conditions

The random-projection combination method was evaluated on noisy
speech recognition tasks. Noisy speech data were taken from the
CENSREC-3 (Corpus and Environments for Noisy Speech RECog-
nition) database [7]. All speech data were collected in car environ-
ments (idling, low speed, and high speed). The “condition 4” of the
CENSREC-3 was used for training and test in this paper. Therefore,
the training data were composed of 3,608 phonetically-balanced sen-
tences, and the total number of speakers for training data was 293
(202 males and 91 females). The test data were composed of 8,836
utterances, and the total number of speakers for testing data was 18
speakers (8 males and 10 females). The tests were carried out on a
50-word recognition task.

The speech signal was sampled at 16 kHz and windowed with
a 20-msec Hamming window every 10 msec. In the mel-filter bank
analysis, a cut-off was applied to frequency components lower than
250 Hz, and the total number of dimensions of the filter-bank output
was 24. In this paper, cepstral mean subtraction was applied to the
MFCC-based feature vectors.

The acoustic models consist of triphone HMMs that have five
states with three distributions. Each distribution was represented
with 32-mixture Gaussians. The baseline system was trained using
36-dimensional feature vectors consisting of 12-dimensional MFCC
parameters, along with their delta and delta-delta parameters. The
baseline recognition accuracy was 76.14%.

Four random-projection-based features were evaluated. Each
feature description is found below.

(I) Random projection is applied to MFCC at t-th frame, x(t) ∈
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RP combination
RP w/o combination
Original feature

Number of RP combination RP w/o combination
random matrices based on ROVER Max. Mean Min.

20 78.35% 78.60% 75.87% 73.65%
40 78.49% 78.60% 75.88% 73.65%
60 78.69% 78.60% 76.10% 73.64%
80 78.73% 78.60% 76.14% 73.64%
100 78.80% 79.20% 76.17% 72.77%

Fig. 4. Random projection for MFCC+Δ+ΔΔ (The recognition rate
for the original feature is 76.14%.) The final system feature dimen-
sionality is 36.

R12, and the new feature, y(t) ∈ R12, is obtained.

y(t) = P(l)T

x(t) (2)

(II) Random projection is applied to MFCC + ΔMFCC +
ΔΔMFCC, x(t) ∈ R36, and the new feature, y(t) ∈ R36, is
obtained.

(III) Random projection is applied to MFCC, x(t) ∈ R12, and
the new feature, y(t) ∈ R12 is obtained. Then the delta and
acceleration coefficients of y(t) are calculated.

(IV) Random projection is applied to a 2-D Gabor feature (60-
dimension) [8] + ΔGabor + ΔΔGabor, x(t) ∈ R180, in the
filter-bank output domain, and the new feature, y(t) ∈ R30,
is obtained.

The number of random matrices is l = 20, 40, 60, 80, and 100.
For example, in the case of l = 20, 20 kinds of the new feature vectors
are calculated using 20 kinds of random matrices. Then, we train the
20 kinds of acoustic models using 20 kinds of the new feature vec-
tors. In the test process, 20 kinds of recognition results are obtained
using 20 kinds of acoustic models.

4.2. Experimental Results

We investigated the performance of random projection for various
random matrices (l = 20, 40, 60, 80, and 100) from N(0, 1). Fig. 3
shows the recognition rate versus the number of random matrices
for (I). The plot of “RP w/o combination” shows the means and the
standard deviations of the random-projection-based features without
ROVER-based combination. As shown in Fig. 3, the results of the
experiment indicate that the vote-based random-projection combi-
nation improves the recognition rate from 67.28% to 71.24% using
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RP combination
RP w/o combination
Original feature

Number of RP combination RP w/o combination
random matrices based on ROVER Max. Mean Min.

20 79.10% 79.04% 75.91% 70.93%
40 79.32% 79.04% 76.02% 70.93%
60 79.40% 79.04% 76.14% 70.93%
80 79.40% 79.04% 75.99% 70.93%
100 79.36% 79.33% 76.03% 70.93%

Fig. 5. Random projection for MFCC (The recognition rate for the
original feature is 76.14%.) The new feature also has its Δ and ΔΔ.
The final system feature dimensionality is 36.

the combination of 20 random matrices, although the performance
of RP (Random Projection) without combination for some random
matrices was lower than the recognition rate of the original feature
(MFCC). Also, even if the number of random matrices increases, we
could not obtain a large performance increase in our experiments.

Fig. 4 and Fig. 5 show the performance for (II) and (III), respec-
tively. The vote-based random-projection combination improved the
recognition rate from the baseline rate, but the performance was
slightly lower than the maximum recognition rate in Fig. 4. Fig. 6
shows the performance for (IV). The experiment results indicate
that the vote-based random-projection combination can improve the
recognition rate from the baseline and any random projection.

Table 1 shows the recognition results of the vote-based random-
projection combination for each in-car condition of the CENSREC-
3 database (condition 4), where speech data were recorded under 5
kinds of in-car environments (normal, with air-conditioner on (fan
low/high), with audio CD player on, and with window open, and
20 random matrices are used. The recognition rate inside the ( )
indicates the baseline. The original feature in (III) is MFCC, but
we compared the performance of the proposed method with that of
MFCC + Δ + ΔΔ in (III) because the proposed feature in (III) was
composed of the random-projection feature, its Δ, and ΔΔ. The
experiment results indicate that the vote-based random-projection
combination improves the average recognition rate for all noise con-
ditions of CENSREC-3. One of the reasons the random projection
improves the recognition rates may be that if distributions of original
data are skewed (have ellipsoidal contours of high eccentricity), their
transformed counterparts will become more spherical [3]. More re-
search will be needed to investigate the effectiveness of the random
projection for speech features.
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Table 1. Recognition rates [%] of the vote-based random-projection combination compared with the original feature. The number of random
matrices was 20.

(I) (II) (III) (IV)
Car speed In-car condition (MFCC) (MFCC+Δ+ΔΔ) (MFCC+Δ+ΔΔ) (Gabor+Δ+ΔΔ)

Normal 87.97 (82.31) 93.16 (91.16) 93.40 (91.16) 93.87 (45.05)
Fan (low) 85.76 (82.82) 91.18 (89.88) 90.59 (89.88) 91.65 (39.06)

Low speed Fan (high) 72.07 (71.84) 74.41 (72.40) 74.97 (72.40) 79.33 (23.46)
Audio (on) 61.72 (59.01) 76.91 (73.62) 77.15 (73.62) 69.73 (26.86)

Window (open) 68.56 (64.55) 77.26 (74.25) 77.70 (74.25) 76.48 (25.75)
Normal 79.44 (70.33) 88.44 (83.56) 89.33 (83.56) 90.44 (37.67)

Fan (low) 80.11 (73.89) 85.56 (83.78) 85.78 (83.78) 88.00 (30.67)
High speed Fan (high) 70.33 (68.22) 69.78 (70.00) 72.89 (70.00) 76.67 (22.11)

Audio (on) 57.73 (51.84) 75.97 (73.30) 75.75 (73.30) 71.19 (24.58)
Window (open) 49.89 (49.22) 52.23 (50.89) 54.68 (50.89) 52.00 (13.47)

Overall 71.24 (67.28) 78.35 (76.14) 79.10 (76.14) 78.84 (28.73)
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RP combination
RP w/o combination
Original feature

Number of RP combination RP w/o combination
random matrices based on ROVER Max. Mean Min.

20 78.84% 73.95% 69.99% 65.86%
40 79.30% 73.95% 69.92% 65.86%
60 79.59% 74.41% 69.88% 64.76%
80 79.57% 74.41% 69.86% 64.76%
100 79.48% 74.41% 69.90% 64.76%

Fig. 6. Random projection for Gabor+Δ+ΔΔ (The recognition rate
for the original feature is 28.73%.) The final system feature dimen-
sionality is 30.

5. CONCLUSION

This paper has described a random-projection-based feature com-
bination technique using random matrices. We can expect to find
a projection matrix that gives a better speech recognition accuracy,
among random matrices, since we are able to produce various ran-
dom matrices. From our recognition results, it has been shown that
the use of the vote-based random-projection combination provides
better performance but with a high computation need. In future re-
search, we will continue to investigate how to select the optimal basis
vector from a random matrix.
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