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ABSTRACT

In order to structure a gene network, a score-based approach
is often used. A score-based approach, however, is problem-
atic because by assuming a probability distribution, one is
prevented from finding other dependent relationships with
other genes. In this research, we structured a gene network
from observed gene expression data using a multiresolution
independence test and a conditional independence test, which
is the non-parametric method proposed by Margaritis for
learning the structure of Bayesian networks without making
any probability distribution assumptions. The experimental
results achieved an improvement in sensitivity of 0.05, and
an improvement in specificity of 0.01.

Index Terms— gene network, Bayesian network, condi-
tional independence test, non-parametric

1. INTRODUCTION

In recent years, one of the most important research problems
in bioinformatics involves discovering out the mechanisms
that form the basis of gene networks. A number of different
frameworks for gene network modeling, Bayesian networks
[1], Boolean networks [2] and differential equations [3], and
so on, have been proposed. The gene expression data obtained
from a DNA microarray is used to find the structure of gene
networks, but this data generally contains a lot of noise and
outliers, and the number of samples is small. In this research,
we chose Bayesian networks, which enabled us to structure
networks with only a few samples.

In order to structure Bayesian networks, the score-based
approach [4] is often used. The score-based approach must
assume a probability distribution, thus preventing one from
finding other dependent relationships with other genes. The
independence-based approach [5] is another method for struc-
turing Bayesian networks without the assumption of a proba-
bility distribution, but this method is problematic because it is
sensitive to noise and outliers. To solve this problem, we in-
corporate a multiresolution independence test [6], which en-
ables us to structure gene networks from unreliable samples,

without any effect from noise or outliers, into the method for
structuring Bayesian networks.

This paper is organized as follows. In section 2 we in-
troduce a method to structure Bayesian networks; in section
3, the multiresolution independence test and the conditional
independence test using its test [7] are explained; in section
4, experiments we performed are explained; and in section 5,
we summarize our research.

2. NETWORK STRUCTURING APPROACH

There are two general classes of algorithms used to structure
Bayesian networks. The first is called the score-based ap-
proach [4], and the second is called the independence-based
approach [5].

2.1. Score-based approach

The score-based approach employs a search in the space of
all possible legal structures guided by a heuristic function.
The search procedure maximizes the score, usually by hill-
climbing. Other search techniques, such as a genetic algo-
rithm, have also been used. This algorithm is problematic in
that a probability distribution must be assumed and the struc-
ture tends toward the local optimum.

2.2. Independence-based approach

The independence-based approach uses the fact that the struc-
ture of a Bayesian network implies a set of conditional inde-
pendence. This property is exploited by conducting a number
of statistical conditional independence tests on the data and
using the results to make inferences about the structure. A set
of possible structures that satisfy the conditional independen-
cies found in the data is constrained, and it is inferred that the
structure is the only possible one. This algorithm is problem-
atic because it is sensitive to noise and outliers.

3. INDEPENDENCE TEST

The independence-based approach enables us to structure
Bayesian networks without the assumption of a probability
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distribution, but this method is sensitive to noise and outliers.
To solve this problem, we use a multiresolution independence
test and a conditional independence test that makes us of the
multiresolution independence test.

3.1. Multiresolution independence test

First, we describe the case for testing independence at a sin-
gle, fixed resolution. We denote the resolution as R ≡ I × J ,
and divide the scatter plot of variables X and Y into I ×
J domains. Also, we denote the counts of each domain as
c1, · · · , cK , K ≡ IJ , the sample size of data set as N , the
probability of each cell as p1, · · · , pK , and the set of grid
boundaries along the axes as BR. The probability of the data
set D is the likelihood of the cell counts, namely,

Pr(D|p1···K ,BR, R) = N !
K∏

k=1

pck

k

ck!
(1)

Since the parameter pk is unknown, we use a prior distribution
Pr(p1···K) to cover for parameter pk. We choose the Dirich-
let distribution, which is conjugated prior to the multinomial,
as a prior distribution.

Pr(p1···K) = Γ(γ)
K∏

k=1

pγk−1
k

Γ(γk)
. (2)

where γ = ΣK
k=1γk and Γ(x) is the gamma function. The

positive numbers γ1···K of this distribution are its hyperpa-
rameters. Given Eq. (1), (2), we get

Pr(D) =
∫

Pr(D|p1···K)Pr(p1···K)dp1···K

=
Γ(γ)

Γ(γ + N)

K∏
k=1

Γ(γk + ck)
Γ(γk)

(3)

When assuming that our data have been produced by one of
two classes of models, one representing independence (MI )
and one not (M¬I ), we get

Pr(D) = Pr(D|MI)Pr(MI)
+ Pr(D|M¬I)Pr(M¬I). (4)

We denote model MI ’s prior probability as Pr(MI) ≡ ρ,
and M¬I ’s prior probability as Pr(M¬I) = 1 − ρ. Eq. (4) is
transformed by Bayes’ theorem to get

Pr(MI | D) = 1/

[
1 +

1 − ρ

ρ

Pr(D|M¬I)
Pr(D|MI)

]
. (5)

The Pr(D | M¬I) of the dependent model that contains IJ
parameters is given by Eq. (6),

Pr(D|M¬I) =
Γ(γ)

Γ(γ + N)

K∏
k=1

Γ(γk + ck)
Γ(γk)

≡ Υ(CK , γK). (6)

For the independent model, we assume two multinomial dis-
tributions, one each along the X and Y axes, that contain J
and I parameters, respectively. The data likelihood is given
by Eq. (7).

Pr(D|MI) =
Γ(α)

Γ(α + N)

I∏
i=1

Γ(αi + ci)
Γ(αi)

× Γ(β)
Γ(β + N)

J∏
j=1

Γ(βj + cj)
Γ(βj)

≡ Υ(CI , αI)Υ(CJ , βJ) (7)

In Eq. (6) and (7), α = ΣI
i=1αi, β = ΣJ

j=1βj , and γ =
ΣK

k=1γk. Assuming the Dirichlet distribution is uniform, we
choose αi = βj = γk = 1 for all i, j, k. Given Eq. (5),
(6) and (7), we get the formula for the posterior probability of
independence at resolution R.

Pr(MI |D) = 1/

[
1 +

(1 − ρ)Υ(CK , γK)
ρΥ(CI , αI)Υ(CJ , βJ)

]
(8)

Then, we employ a Bayesian approach and average over the
possible choices, weighted by their posterior.

Pr(MI |Rmax,D) =
∫

Pr(MI |BR, Rmax,D)

Pr(BRmax |Rmax,D)dBRmax (9)

To compute the inner integral, we should ideally average over
all possible histogram boundary placements along the X and
Y axes. We assume a uniform prior distribution Pr(BR | R)
over the grid boundary placement.

3.2. Conditional independence test

Our procedure for testing for the conditional independence of
X and Y given Z can be summarized in the following three
steps:

1. Subdivide the Z axis into m bins resulting in a partition
of the data set D of size N into D1,D2, · · ·Dm.

2. Measure the conditional independence in each bin
by performing an independence test for X and Y
(Pr(MI | D)), using the multiresolution independence
test.

3. Combine the conditional independence from each bin
into a single number.

In these steps, the basis of testing for conditional indepen-
dence in each bin and the algorithm of testing for conditional
independence, called the recursive-median algorithm, are de-
scribed below.
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3.2.1. Testing for conditional independence in each bin

Theorem 1 If({X,Y } ⊥ Z), then (X ⊥ Y | Z) if and
only if(X ⊥ Y ).

We can use the above theorem as follows. If Pr({X,Y } ⊥
Z | Di) = 1, the conditional independence of X and Y
given Z is the same as Pr(X ⊥ Y | Di), according to the
theorem. If Pr({X,Y } ⊥ Z | Di) = 0, nothing can be
said about the conditional independence of X and Y given
Z without actually conducting a conditional test. This is be-
cause the distribution of {X,Y } is certain to change with Z
within the bin, making the theorem inapplicable. Therefore,
in this case, the posterior is taken equal to the prior probability
Pr(X ⊥ Y | Z,Di) = ρ = 0.5. From the above fact, denot-
ing ({X,Y } ⊥ Z) ≡ U , (X ⊥ Y ) ≡ I , (X ⊥ Y |Z) ≡ CI ,
using the theorem of total probability, Pr(CI | Di) is:

Pr(CI|Di) = Pr(CI|U,Di)Pr(U |Di)
+ Pr(CI|¬U,Di)Pr(¬U ||Di)
= Pr(I|Di)Pr(U |Di)
+ ρ(1 − Pr(U |Di)) (10)

This test can be used for both Pr(U | Di) and Pr(I | Di)
since they are not conditional. Therefore, we now have a way
of estimating the posterior probability of conditional inde-
pendence from the results of two unconditional independence
tests, in each bin of a given discretization of the Z-axis.

3.2.2. Recursive-median algorithm

The recursive-median algorithm is shown in Fig. 1. The
names of variables X , Y and Z and a data set D are input
into the algorithm. It starts by calculating the measure of pos-
terior probability of independence I and U using a single in-
terval along the Z-axis that contains the entire data set. It then
splits the data set along the Z-axis at the median, producing
two non-overlapping intervals containing the same number of
points and recursively calculates the above process for each of
the two subsets. When only one point remains, the recursion
reaches its base case. In this case, 0.5 is returned both for I
and U , since both the independent and dependent model are
supported by the single data point equally well. The recur-
sive calculation results, I1, I2 and U1, U2 are then combined
into I ′ and U ′. At the end of the run on the entire data set,
the returned value of U can be discarded or used as a mea-
sure of confidence in the main result, if desired. We conclude
conditional independence if and only if I/ρ ≥ 1.

4. EXPERIMENTS

We structured a gene network from the observed gene ex-
pression data of a yeast cell cycle obtained from GEO (Gene
Expression Omnibus). We use only genes on the cell cycle
pathway (Fig. 2) in KEGG (Kyoto Encyclopedia of Genes

(I, U) = Recursive-Median (X,Y, Z,D)

　
　 if | D |≤ 1
　　 return(0.5, 0.5)
　 U = Pr({X,Y } ⊥ Z | D)
　 I = Pr(X ⊥ Y | D) ×U + ρ× (1 - U )
　 z∗ = median (D, Z)
　D1 = { points j of D such that zj ≤ z∗ }
　D2 = { points j of D such that zj > z∗ }
　 (I1, U1) = Recursive-Median (X,Y, Z,D1)　
　 (I2, U2) = Recursive-Median (X,Y, Z,D2)　
　 f1 = (z∗ − zmin)/(zmax − zmin)
　 f2 = (zmax − z∗)/(zmax − zmin)
　 I ′ = exp(f1lnI1 + f2lnI2)
　 U ′ = exp(f1lnU1 + f2lnU2)
　 ifU > U ′

　　 return(0.5, 0.5)
　 else
　　 return(0.5, 0.5)
　

Fig. 1. The recursive-median algorithm

and Genomes) Database. The score-based approach, the
independence-based approach, and the independence-based
approach using the multiresolution independence test (the
network structured by this method is shown in Fig. 3.) were
used for the method to structure a gene network and these
methods were compared (Fig. 4) based on sensitivity (the
number of correctly achieved edges divided by the num-
ber of target edges) and specificity (the number of correctly
achieved non-edges divided by the number of target non-
edges). We used hill-climbing for the score-based approach’s
search method, a Bayesian information criterion (BIC) for
the score-based approach’s score, and the correlation coeffi-
cient for the independence-based approach’s independence.
In Fig. 4, the blue bar denotes the results of the score-based
approach, the red bar denotes the results of the independence-
based approach, and the green bar denotes the results of
the independence-based approach using the multiresolution
independence test.

Based on the results, the sensitivity and specificity of the
independence-based approach using the multiresolution inde-
pendence test achieved the highest value. These results in-
dicate that the multiresolution independence test enables us
to structure gene networks from unreliable samples without
effect of noise or outliers.

5. SUMMARY

We incorporated a multiresolution independence test into the
method used to structure a Bayesian network, structured a
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Fig. 2. Target network

Fig. 3. Network constructed by independence-based ap-
proach and multiresolution independence test

gene network from the observed gene expression data, and
compared this approach with existing methods. The results
show an improvement in the network structured by the pro-
posed method, proving the new method’s potential as a gene
network structuring method.
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