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Abstract – This paper introduces an active micro-
phone concept that achieves a good combination of
active-operation and signal processing, where a new
sound-source-direction estimation method using only a
single microphone with a parabolic reflection board is
proposed. A simple signal-power-based method using a
parabolic antenna has been proposed in the radar field.
But the signal-power-based method is not effective for
finding the direction of a talking person due to the vary-
ing power of the uttered speech signals. In this pa-
per, the sound-source-direction estimation method fo-
cuses on the acoustic transfer function instead of the
signal power. The use of the parabolic reflection board
leads to a difference in the acoustic transfer functions of
the target direction and the non-target directions, where
the active microphone rotates and observes the speech at
each angle. The acoustic transfer function is estimated
from the observed speech using the statistics of clean
speech signals. Its effectiveness is confirmed by monau-
ral sound-source-direction estimation experiments in a
room environment.
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1 Introduction
Many systems using microphone arrays have been tried
in order to localize sound sources. Conventional tech-
niques, such as MUSIC, CSP, and so on (e.g., [1, 2]),
use simultaneous phase information from microphone
arrays to estimate the direction of the arriving signal.
Also, sound source localization techniques focusing on
the auditory system have been described in [3, 4].
Single-microphone source separation is one of the

most challenging scenarios in the field of signal pro-
cessing, and some techniques have been described (e.g.,
[5, 6, 7, 8]). In our previous work [9], we discussed a
sound source localization method using only a single
microphone. In that report, the acoustic transfer func-
tion was estimated from observed (reverberant) speech

using the statistics of clean speech signals without us-
ing texts of the user’s utterance, where a GMM (Gaus-
sian Mixture Model) was used to model the features
of the clean speech. This estimation is performed in
the cepstral domain employing a maximum-likelihood-
based approach. This is possible because the cepstral
parameters are an effective representation for retaining
useful clean speech information. The experiment re-
sults of our talker-localization showed its effectiveness.
However, the previous method required the measure-
ment of speech for each room environment in advance.
Therefore, this paper presents a new method that uses
parabolic reflection that is able to estimate the sound
source direction without any need for such prior mea-
surements.

In this paper, we introduce the concept of an ac-
tive microphone that achieves a good combination of
active-operation and signal processing. The active mi-
crophone has a parabolic reflection board, which is ex-
tremely simple in construction. The reflector and its
associated microphone rotate together, perform signal
processing, and seek to locate the direction of the sound
source.

A simple signal-power-based method using a
parabolic antenna has been proposed in the radar field.
But the signal-power-based method is not effective for
finding the direction of a person talking in a room
environment. One of the reasons is that the power
of the speech signal varies for all directions of the
parabolic antenna, since a person does not utter the
same power (word) for all directions of the parabolic an-
tenna. Therefore, in this paper, our new sound-source-
direction estimation method focuses on the acoustic
transfer function instead of the signal power. The use
of the parabolic reflection board results in a difference
in the acoustic transfer functions of the target direction
and the non-target directions, where the active micro-
phone with the parabolic reflection board rotates and
observes the speech at each angle. The sound source di-
rection is detected by comparing the acoustic transfer



functions observed at each angle, which are estimated
from the observed speech using the statistics of clean
speech signals. Its effectiveness is confirmed by sound-
source-direction estimation experiments in a room en-
vironment.

2 Active microphone

2.1 Parabolic reflection board

In this paper, an active microphone with a parabolic
reflection board is introduced for estimation of sound
source direction, where the reflection board has the
shape of a parabolic surface. Under the assumption of
the plane wave, any line (wave) parallel to the axis of
the parabolic surface is reflected toward the focal point.
On the other hand, if the sound source is not located at
90 degrees (in front of the parabolic surface), no reflec-
tion wave will travel toward the focal point. Therefore,
the use of the parabolic reflection board will be able
to give us the difference in the acoustic transfer func-
tion between the target direction and the non-target
directions.

2.2 Signal observed using parabolic re-
flection

Next, we consider the signal observed using parabolic
reflection [11]. In [11], a simple signal-power-based
method using a parabolic reflection board has been de-
scribed. Its effectiveness has been confirmed on white
noise signals, but the signal-power-based method was
not effective for finding the direction of a talking person
due to the varying power of the uttered speech signals.
As shown in Figure 1(a), when the sound source is

located directly in front of the parabolic surface and
there is no background noise, the observed signal at the
focal point at time t can be expressed by the addition
of the waves arriving at the focal point directly (direct
wave) and those arriving at the focal point after being
reflected by the parabolic surface (reflection waves):

o(t) = x0(t) +
M∑

m=1
xm(t) (1)

where o(t), x0 and xm (m = 1, · · · ,M) are observed
sound, direct sound and reflection sound, respectively.
Based on the property of a parabola, the time differ-
ence to the focal point between the direct and reflection
waves is constant without depending on m. Therefore,
(1) can be written as

o(t) = s(t) ∗ h0(t) +
M∑

m=1
s(t − τ) ∗ hm(t) (2)

where s(t) and τ are clean speech and the time differ-
ence, respectively. h0 is the acoustic transfer function
of a direct wave and hm is that of a reflection wave.
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Figure 1: (a) Observed signal at the focal point, where
the input signal is coming from directly in front of
the parabolic surface. (b) Active microphone with
parabolic reflection.

By applying the short-term Fourier transform, the ob-
served spectrum at frame n is given by

O(ω;n)

≈ S(ω;n) · (H0(ω;n) + e−j2πωτ ·
M∑

m=1
Hm(ω;n))

= S(ω;n) · (Hp(ω;n) +Hr(ω;n)). (3)

Here Hp is the acoustic transfer function of the di-
rect sound that is not influenced by parabolic reflec-
tion. Hr is the acoustic transfer function resulting from
parabolic reflection.
On the other hand, when the sound source is not lo-

cated in front of the parabolic surface, parabolic reflec-
tion does not influence the acoustic transfer function
since no reflection waves will travel toward the focal
point:

O(ω;n) ≈ S(ω;n) · H0(ω;n) = S(ω;n) · Hp(ω;n). (4)

2.3 Estimation of sound source direc-
tion

As shown in Figure 1(b), a new active microphone with
a parabolic reflection board was constructed with the
microphone located at the focal point. In order to ob-
tain the signal observed at each angle, the angle of the
microphone was changed manually in research carried
out for this paper. Then, from equations (3) and (4),
the spectrum of the signal observed at a microphone
angle θ can be expressed as

Oθ(ω;n) ≈ Sθ(ω;n) · Hθ(ω;n)

Hθ(ω;n) =
{

Hp(ω;n) +Hr(ω;n) (θ = θ̂)
Hp(ω;n) (θ �= θ̂)

(5)

where Sθ and Hθ are spectra of clean speech and acous-
tic transfer function at the angle θ and θ̂ is the sound
source direction. Assuming Hp is nearly constant for
each angle, when the active microphone does not face
the sound source, the value of Hθ will be almost the



same for every non-target directions. On the other
hand, the only condition under which Hθ will have a
different value from that obtained at the other angles
is when the active microphone faces the sound source.
Therefore, the sound source direction can be esti-

mated by selecting the direction whose the acoustic
transfer function is the farthest from the acoustic trans-
fer functions of other directions:

θ̂ = argmax
i

∑
j

(H̄i − H̄j)2 (6)

where i and j are the angle of microphone, and H̄ is the
expectation of H. Actually, in this research, the cep-
strum of acoustic transfer function is used to calculate
this equation. In the next section, we will describe how
to estimate Hi from observed speech signals.

3 Estimation of the acoustic
transfer function

In our previous work [9], we proposed a method to es-
timate the acoustic transfer function from the rever-
berant speech (any utterance) using the clean-speech
acoustic model, where a GMM is used to model the
feature of the clean speech. The clean speech GMM
enables us to estimate the acoustic transfer function
from the observed speech without needing to have texts
of the user’s utterance (text-independent estimation).
However, because an active microphone with parabolic
reflection board was not used, the previous method re-
quired the measurement of speech for each room envi-
ronment in advance in order to be able to determine the
direction of a talking person. In this paper, we can es-
timate the sound source direction without any need for
prior measurements by information fusion of an active
microphone and an estimation of an acoustic transfer
function.

3.1 Cepstrum representation of rever-
berant speech

The observed signal (reverberant speech), o(t), in a
room environment is generally considered as the con-
volution of clean speech and acoustic transfer function.
The spectral analysis of the acoustic modeling is gener-
ally carried out using short-term windowing. Therefore,
the observed spectrum is approximately represented by
O(ω;n) ≈ S(ω;n) · H(ω;n), where the length of the
acoustic transfer function may be greater than that of
the window. Here O(ω;n), S(ω;n), and H(ω;n) are
the short-term linear spectra in the analysis window n.
Cepstral parameters are an effective representation

for retaining useful speech information in speech recog-
nition. Therefore, we use the cepstrum for acoustic
modeling necessary to estimate the acoustic transfer
function. The cepstrum of the observed signal is given

by the inverse Fourier transform of the log spectrum:

Ocep(d;n) ≈ Scep(d;n) +Hcep(d;n) (7)

where Ocep, Scep, and Hcep are cepstra for the observed
signal, clean speech signal, and acoustic transfer func-
tion, respectively. As shown in equation (7), if O and
S are observed, H can be obtained by

Hcep(d;n) ≈ Ocep(d;n)− Scep(d;n). (8)

However S cannot be observed actually. Therefore H
is estimated by maximizing the likelihood (ML) of ob-
served speech using clean-speech GMM.

3.2 Maximum-likelihood-based param-
eter estimation

The sequence of the acoustic transfer function in (8) is
estimated in an ML manner [10] by using the expec-
tation maximization (EM) algorithm, which maximizes
the likelihood of the observed speech:

Ĥ = argmax
H

Pr(O|H, λS). (9)

Here, λ denotes the set of GMM parameters of the clean
speech, while the suffix S represents the clean speech in
the cepstral domain. The GMM of clean speech consists
of a mixture of Gaussian distributions.

λS = {wk, N(μ(S)
k , σ

(S)2

k )}, ∑
k wk = 1 (10)

where wk, μk and σ2
k are the weight coefficient,

mean vector and variance vector (diagonal covari-
ance matrix) of the k-th mixture component, re-
spectively. Those parameters are estimated by EM
(Expectation-Maximization) algorithm using a clean
speech database.
The estimation of the acoustic transfer function in

each frame is performed in a maximum likelihood fash-
ion by using the EM algorithm. The EM algorithm is
a two-step iterative procedure. In the first step, called
the expectation step, the following auxiliary function Q
is computed.

Q(Ĥ|H)
= E[log Pr(O, c|Ĥ, λS)|H, λS ]

=
∑

c

Pr(O, c|H, λS)
Pr(O|H, λS)

· log Pr(O, c|Ĥ, λS) (11)

Here c represents the unobserved mixture component
labels corresponding to the observation sequence O.
The joint probability of observing sequences O and c

can be calculated as

Pr(O, c|Ĥ, λS) =
∏
n(v)

wc
n(v) Pr(On(v) |Ĥ, λS) (12)

where w is the mixture weight and On(v) is the cepstrum
at the n-th frame for the v-th training data (observation



data). Since we consider the acoustic transfer function
as additive noise in the cepstral domain, the mean to
mixture k in the model λO is derived by adding the
acoustic transfer function. Therefore, equation (12) can
be written as

Pr(O, c|Ĥ, λS)

=
∏
n(v)

wc
n(v) · N(On(v) ;μ(S)

k
n(v)

+ Ĥn(v) , Σ(S)
k

n(v)
) (13)

where N(O;μ,Σ) denotes the multivariate Gaussian
distribution. It is straightforward to derive that

Q(Ĥ|H)

=
∑

k

∑
n(v)

Pr(On(v) , cn(v) = k|λS) logwk

+
∑

k

∑
n(v)

Pr(On(v) , cn(v) = k|λS)

· logN(On(v) ;μ(S)
k + Ĥn(v) ,Σ(S)

k ) (14)

Here μ
(S)
k and Σ(S)

k are the k-th mean vector and the
(diagonal) covariance matrix in the clean speech GMM,
respectively. It is possible to train those parameters by
using a clean speech database. Next, we focus only on
the term involving H.

Q(Ĥ|H) = −
∑

k

∑
n

γk(n)
D∑

d=1

{
1
2
log(2π)Dσ

(S)2

k,d

+
(O(d;n)− μ

(S)
k,d − Ĥ(d;n))2

2σ(S)2

k,d

}
(15)

γk(n) = Pr(O(n), k|λS) (16)

Here O(n) is the cepstrum at the n-th frame for ob-
served speech data. D is the dimension of the O(n),
and μ

(S)
k,d and σ

(S)2

k,d are the d-th mean value and the
d-th diagonal variance value of the k-th component in
the clean speech GMM, respectively.
The maximization step (M-step) in the EM algo-

rithm becomes “max Q(Ĥ|H)”. The re-estimation
formula can, therefore, be derived, knowing that
∂Q(Ĥ|H)/∂Ĥ = 0 as

Ĥ(d;n) =

∑
k γk(n)

O(d;n)−μ
(S)
k,d

σ
(S)2

k,d∑
k

γk(n)

σ
(S)2

k,d

. (17)

Therefore, the sound source direction is estimated by
equation (6) using cepstral vector Ĥ(d;n) to calculate
H̄i or H̄j .

4 Experiment
4.1 Experiment conditions

The direction estimation experiment was carried out
in a real room environment. The parabolic reflection
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Figure 2: Performance of an active microphone with a
parabolic reflection board

microphone shown in Figure 1 was used for the ex-
periments. The diameter was 24 cm, and the distance
of the focal point was 9 cm. The microphone located
at the focal point is an omnidirectional type (SONY
ECM-77B). The target sound source was located at 90
degrees and 2 m from the microphone. The angle of
the parabolic reflection microphone was changed man-
ually from 30 degrees to 150 degrees in increments of 20
degrees. Then the acoustic transfer function of the tar-
get signal at each angle was estimated for the following
speech length: 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 seconds.
The size of the recording room was about 6.3 m × 7.2
m (width × depth).

The speech signal was sampled at 12 kHz, and win-
dowed with a 32-msec Hamming window every 8 msec.
The clean speech GMM was trained by using 50 sen-
tences (spoken by a female) in the ASJ Japanese speech
database. The trained GMM has 64 Gaussian mixture
components. Then 2nd-order MFCCs (Mel-Frequency
Cepstral Coefficients) were used as feature vectors.
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Figure 3: Performance of a shotgun microphone with-
out a parabolic reflection board
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for the shotgun microphone

4.2 Experiment results

Figure 2 shows the performance of the direction accu-
racy using the acoustic transfer function estimated in
various speech length, and the performance is compared
to the power-based technique. The top figure shows the
accuracy for the same text utterance at each angle of
the active microphone, and the bottom figure shows the
accuracy for a different text utterance at each angle of
the active microphone. As shown in the top figure,

the performance for both the techniques based on the
power and the acoustic transfer function is high. But
the possibility of the same text utterance at each angle
of the active microphone will be very small in a real
environment.
In the bottom portion of Figure 2, we can see that

the performance of the power-based technique degrades
drastically when the utterance text differs at each an-
gle of the active microphone, because the power of the
speech signal varies for all directions of the active micro-
phone. On the other hand, the performance of the new
method based on the acoustic transfer function is high,
even for the different text utterance. This is because
the new method uses the information of the acoustic
transfer function, which depends on the direction of
the active microphone only and does not depend on
the utterance text. Also, we can see that the shorter
the speech length for each angle is, the more the direc-
tion accuracy decreases. One of the reasons is that the
statistics for the observed speech is not readily available
if not enough samples are used to estimate the acoustic
transfer function.
Figure 3 shows the performance of a shotgun micro-

phone (SONY ECM-674) without a parabolic reflec-
tion board. The power-based method can provide good
performance for the same text utterance at each an-
gle of the shotgun microphone due to the directivity
of the shotgun microphone, but the performance de-
grades when the utterance text differs at each angle
of the shotgun microphone. On the other hand, the
performance of the new method based on the acoustic
transfer function is even lower. The directivity of the
shotgun microphone changes drastically as the sound-
source direction changes from the front direction to the
side directions of the shotgun microphone, and as a re-
sult, the acoustic transfer function that is farthest from
all the other acoustic transfer functions becomes to be
that at 30 or 150 degrees in equation (6). The mean
values of all acoustic transfer functions are plotted in
Figure 4, where the acoustic transfer function is com-
puted by (8) using true clean speech signal, Scep(d;n),
and then the mean values are computed. As shown in
Figure 4, we can see that the acoustic transfer func-
tion that is farthest from all the other acoustic transfer
functions is that at 30 or 150 degrees.
Figure 5 and Figure 6 show the plot of acoustic trans-

fer function for 300 segments of observed speech for
the case of the active microphone. In Figure 5, the
acoustic transfer function Hsub was computed by (8)
using true clean speech signal, Scep(d;n). On the other
hand, in Figure 6, the acoustic transfer function Hest

was estimated by (17) using only the statistics of clean
speech GMM. As shown in Figure 5, when the active
microphone does not face the sound source, Hsub is
distributed in almost the same place. And Hsub of
the sound source direction is distributed away from the
Hsub of other directions. In Figure 6, though the dis-
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true clean speech data at each angle in the cepstral
domain
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Figure 6: Acoustic transfer function estimated by the
proposed method using only the statistics of clean
speech GMM at each angle in the cepstral domain
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tribution of the estimated Hest may have some slight
variations, it can be said that the distribution of Hest

is similar that of Hsub.
Figure 7 shows the difference in the direction accu-

racy between the use of Hsub (the true clean speech
data) and Hest (the statistics of clean speech model:
GMM). As shown in this figure, when the utterances for
each angle consist of the same text, the direction accu-
racy was 100%. However, when the texts of utterances
for each angle are different, the direction accuracy ob-
tained using Hest decreased. This is because the value
of Hest was influenced to some extent by the phoneme
sequence of clean speech.

5 Conclusions
This paper has introduced the concept of an active mi-
crophone that achieves a good combination of active-
operation and signal processing, and described a sound-
source-direction estimation method using a single mi-
crophone. The experiment results in a room environ-
ment confirmed that the acoustic transfer function in-
fluenced by parabolic reflection can clarify the differ-
ence between the target direction and the non-target
direction. In future work, more research will be needed
in regard to different utterances and direction estima-
tion in short intervals. Also, we intend to investigate
the performance of the proposed system in noisy en-
vironments, such as with multiple sound sources and
when the orientation of the speaker’s head changes,
and to test the performance of the system in a speaker-
independent speech model.
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