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Abstract feature extraction was proposed in the field of facial emo-
tion recognition [2]. Otsu computed 35 types of local auto-
We have already proposed a new feature extraction correlation features within a two-dimensional local area at
method based on higher-order local auto-correlation and each pixel on an image and accumulated them within some
Fisher weight map (FWM) at Interspeech2006. This paper discriminative areas where the typical features among all
shows effectiveness of the proposed FWM in speaker deperemotions were well expressed. The map showing this dis-
dent and speaker independent phoneme recognition. Widelycriminative areas was called Fisher weight map and Otsu
used MFCC features lack temporal dynamics. To solve thisemployed a discriminant analysis to find this Fisher weight
problem, local auto-correlation features are computed and map.
accumulated by weighting high scores on the discriminative ~ We have already proposed a method to find the geo-
areas. This score map is called Fisher weight map. From metrical discriminative features and discriminative areas
the speaker dependent phoneme recognition, the proposedf phonemes on the temporal-frequency domain of speech
FWM showed 79.5% recognition rate, by 5.0 points higher signals by using the Fisher weight maps and showed the
than the result by MFCC. Furhermore by combing FWM effectiveness by vowel recognition[3]. In this paper, ef-
with MFCC andAMFCC, the recognition rate improved to  fectiveness of the proposed discriminative feature is veri-
88.3%. In the speaker independent phoneme recognition, itfied through speaker dependent and speaker independent 25
showed 84.2% recognition rate, by 11.0 points higher than phoneme recognition experiments.
the result by MFCC. By combining FWM with MFCC and In section 2 of this paper, we describe an extraction
AMFCC, the reecognition rate improved to 89.0%. flow of the geometrical discriminative features for phoneme
recognition. In section 3 and 4, auto-correlation coefficients
based on the local features and the Fisher weight maps are
1. Introduction described. In section 5, speaker dependent and speaker in-
dependent phoneme recognition experiments are shown.

In speech recognition, MFCC (Mel-Frequency Cepstrum . . R
Coefficient) is widely used which is a cepstrum conversion 2- E.XtraCt'On flow of geometrical discrimina-
of a sub-band mel-frequency spectrum within a short time.  tive features
Due to the characteristic of short time spectrum, MFCC
lacks temporal dynamic features and degrades the recog- Fig.1 shows an extraction flow of geometrical discrimi-
nition rate. To overcome this defect, the regression coeffi- native features and phoneme recognition. At first, speech
cients of MFCC (delta, delta delta MFCC) are usually uti- waveforms are converted into time-frequency domain by
lized, but they are indirect expression of temporal frequency short-time Fourier transformation. At this point, a time se-
changes such as formant transition or high frequency plo-quence of short-time spectra (frames) is obtained. Then
sives. a moving window with consecutive several frames is put
More direct expression of the temporal frequency on the time sequence of short-time spectra, forming a win-
changes will be a geometrical feature in a two-dimensional dowed time-frequency matrix. Local features of 35 types
local area, for example within 3 frames by 3 frequency are computed at each position (time, frequency) within this
bands area, on the temporal frequency domain[1]. In orderwindow, forming a local feature matrik with the number
to locate such two-dimensional geometrical features, auto-of positionsx 35 types of local features.
correlation within a local area is effective because it can  Finally Fisher weight mapv is produced by applying
enhance the geometrical features. Originally this type of linear discriminant analysis (LDA) to the local feature ma-
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as weighted higher-order local auto-correlation by summing
up the local features weighted by the Fisher weight map for 11 i [
each type of local features, forming 35 dimensional vector 023 No.24 No25 No.26 No27 No2§ No29  No.30
x for a window. By moving this window, a sequence of 35 L
dimensional vectors of geometrical discriminative features
are obtained.

In a phoneme recognition, phoneme GMMs are trained
at first. Then the test speech data is converted into a se- Figure 3. 35 types of local patterns.
guence of 35 dimensional vectors of geometrical discrimi-
native features and phoneme likelihood is computed using
the trained phoneme GMMs. wherel(r) is the power spectrum at the positioon time-

frequency matrix composed of timend frequencyf. The
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3 Local features and weighted higher order r+a£k) indicates the other position, where "1" is attached,
local auto-correlations within the k-th local pattern.
By limiting local patterns within 3 frames 3 bands
3.1 Local features area at reference positief setting the ordeN to be 2 and
omitting the equivalence of translation, the number of dis-
Two-dimensional geometrical and local features are ob- placement setd, - - -, ay) becomes 35. Namely 35 types

served on the time-frequency matrix shown on the left in ©f local patterns are obtained at each positiam the time-
Fig.2. On the right hand sid8 x 3 local patterns are shown T€dquéncy matrix as shown in Fig.3, according to Otsu[2].
to capture the local features. The upper pattern is for con-

tinuation in a time direction, the middle for continuationin 3.2 Weighted higher order local auto-

a frequency direction and the lower for transition. The flag correlations
"1” indicates the multiplication of the spectrum on the po-
sition. ] )
A local feature within thek-th local pattern at a position Higher-order local auto-correlation; for the k-th local
is formalized as follows: pattern is obtained by summing the local features shown

in Eq.1 on the time-frequency matrix. It is formalized as
hE = 1M I+ a1+ a') (1)  follows;
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In order to express the higher-order local auto-
correlation in the matrix form, all the local features shown
in Eqg.1 for thek-th local pattern are collected on the time-
frequency matrix and presented as a following vector.

)
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here the dimension of the vectoriig =T — 2 (time) x
F — 2 (frequency).

The higher-order local auto-correlatiar), for the k-
th local pattern is expressed as follows using the
dimensional vectoh(*),

z, =h®t1 4)

A local feature matrix is obtained as follows by placing
the M-dimensional vectora(*) in the horizontal direction
one by one for all the 35 local patterns.

H= [h(l) e h(K)] (5)
The higher-order local auto-correlation vectolis ob-
tained by packing the; and is expressed as follows;

vx]t = H'1 (6)

X:[.'L'l

Fig.4 shows an example of computing the local feature

matrix H. Here, moving 35 local patterns on the windowed
time-frequency matrixq x 6), the local features are com-
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Figure 4. Local feature matrix.

4 Fisher weight map

In order to find the Fisher weight map, Fisher’s discrim-
inative criterion is utilized[2]. LetN be the number of
training data. Then the local feature matrices for the train-
ing data are denoted §#1; € RM*K}N . . The corre-
sponding weighted higher-order local auto-correlation vec-
tors, the within-class covariance matrix and the between-
class covariance matrix are denoted{as}Y ,, ¥y and
Y respectively. Then the Fisher discriminative criterion
J(w) is expressed as follows using those denotations.

J(W _ t?"NZ‘B _ WtEBW
tT‘EW

where Yy, and X' is the within-class covariance matrix

and the between-class matrix of the local feature matrices

8)
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puted. These local features are packed into the local featurgyaining data).

matrixH (28 x 35). The higher-order local auto-correlation

The Fisher weight map is obtained as eigen vectors

over the time-frequency matrix. Therefore, it is not the dis-
criminative vector. In order to make the higher-order lo-
cal auto-correlation vectot have the discriminative ability,

local features of the same local pattern are summed over

the windowed time-frequency matrix by putting the high

tion derived by maximizing the Fisher discriminative crite-
rion under the constraint such that 2w = 1

9)
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weight on the local features where class difference appearsSince the Fisher weight map is composed of several eigen

clearly. This is done by replacing the vectbiconsisting
of M "1"s by the weighting vectow. Then the weighted
higher-order local auto-correlation vectaris obtained as
follows;

x = H'w

@)

vectors, the number of eigen vectors is optimized in the
phoneme recognition process.

However, if the number of eigen vectors are set to 25,
the weighted higher-order local auto-correlation vector
shown in EQ.7 equals to 8784 x 25) dimensional vector.
Itis so high that the GMM used in the phoneme recognition
can not be estimated accurately and stably. To solve this

Herew is called Fisher weight map because it is computed problem, PCA (Principal Component Analysis) is used to

based on linear discriminant analysis.

reduce the dimension effectively.



5 Phoneme recognition experiments

90%
5.1 Experimental setup 2 85%
s 79.5%
We carried out speaker dependent and independent £ 0% T ras% 758% 74.2%
Japanese 25 phoneme recognition. Speech material was ?D 5% 1
continuous speech data spoken by six male speakers and § 70% [ ]
four female speakers and was manually segmented into ¥ 65% |-
phoneme sections. In the speaker dependent phoneme  60%
recognition, 2578 data (about 100 data for each phoneme) MFCC AMFCC FWM FWM
segmented by hands for all phonemes were collected from withpower withpower w/oPCA  with PCA
13 dim 13 dim 875dim 150 dim

individual speaker and used for phoneme training (Fisher
weight map and phoneme GMMs) . Other 2578 phoneme
data from individual speaker were tested. Phoneme recog-
nition rate was computed by averaging the results from ten
speakers.

On the other hand, in the speaker independent phoneme
recognition, the training data from ten speakers were 5.3 Speaker dependent phoneme recogni-
collected together and used for Fisher weight map and tion by feature integration
phoneme GMMs training. In the phoneme recognition, the
test data from individual speaker was tested in the same way ~ Since FWM showed the highest phoneme recogntion
as the speaker dependent manner. rate using single feature, it was combined with MFCC and

Speech waveform was transformed into time-frequency AMFCC in the phoneme recognition. The feature combi-
matrix by short-time Fourier transformation with 25ms nation was based on a stream weighting method which con-
frame width and 10ms frame shift. Then the frequency catenated two or more feature vectors by weighting the re-
was converted into mel-scale by mel-fiter bank (64 dimen- spective feature. The weight was experimentally optimized,
sion). A window withT" frame width andS frame shift  changing the weight ratio from 0.0:1.0 to 1.0:0.0 by 0.1
was moved on the time-frequency matrix and the windowed step. In this case, the dimension of FWM was decreased
time-frequency matrices were generated. T and S were op1o 55 from 150 due to computation time.
timized experimentally to 5 and 1 respectively. The number  Fig.6 shows the phoneme recognition result. FWM im-
of eigen vectordV included in the Fisher weight map and proved the recognition rate by 2.6 points and 6.0 points after
the number of Gaussian mixturésn phoneme GMM were  combined with MFCC andAMFCC respectively compared
experimentally optimized in the phoneme recognition. The with original FWM (79.5% in Fig.5). Comibination of two
number of dimension® of the weighted higher-order local  features MFCC andAMFCC still showed the highest score
auto-correlation vectax reduced by PCA was also experi- 86.7%. When three features FWM, MECC andMFCC

Figure 5. Results of speaker dependent
phoneme recognition using single feature.

mentally optimized. were combined together, the recogntioin rate showed the
highest score 88.3%. This indicates that the FWM has in-
5.2 Speaker dependent phoneme recogni- formation to improve the recognition obtained by MFCC
tion using single feature andAMFCC combination.
Fig.5 shows the results of speaker dependent phoneme 99 86:7% 88.3%
" . . 85.5%
recognition using the proposed feature, compared with the o g5 | g2.19%
recognition result using MFCC. £ s0% | -
The highest phoneme recognition rate 79.5% was ob- £ .., |
tained by the proposed feature with the number of eigen gn 70% | L
vectorsW = 25 (35 x 25=875 dimensions) in the Fisher ;4‘3 5% -
weight map, the number of dimensiohs = 150 of the ’
weighted higher-order local auto-correlation vectore- 60%
duced by PCA and the number of Gaussian mixtues: i}ggg AFI\Y%:: Zﬁggz I\Fggg
8 in the phoneme GMMs. Compared with MFCC and AMFCC

AMFCC, the recognition rate was improved by 5 points

and 3.7 points respectively due to the direct expression of Figure 6. Results of speaker dependent
temporal features by the proposed method. When the PCA phoneme recognition by feature integration.
was not applied, since the dimension is so high as 875, the

recognition rate was almost same as that of MFCC.



5.4 Speaker independent phoneme recog-
nition using single feature

Fig.7 shows the results of speaker independent phoneme

recognition using the proposed feature FWM, compared
with the recognition result using MFCC.

The highest phoneme recognition rate 84.2% was ob-
tained by the proposed feature FWM with the number of
eigen vectord¥ = 35 (35 x 35=1225 dimensions) in the
Fisher weight map, the number of dimensidns= 50, in-
stead ofD = 150, of the weighted higher-order local auto-
correlation vectorx reduced by PCA and the number of
Gaussian mixture&/ = 8 in the phoneme GMMs. Com-
pared with MFCC andAMFCC, the recognition rate was
improved by 11 points and 9.2 points respectively due to ac-
cumulation of the direct expression of temporal features of
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Figure 8. Results of speaker independent
phoneme recognition by feature integration.

6 Conclusion

We described the new feature extraction method based
on higher-order local auto-correlation and Fisher weight

10 person by the proposed method. Compared with speakemap (FWM). The effectiveness was verified through

dependent result shown in Fig.5, the result of MFCC and
AMFCC decreased due to data variation. However the re-
sult of FWM showed 4.7 points improvement by speaker in-

speaker dependent and speaker independent phoneme
recognition. From the speaker dependent phoneme recog-
nition, the proposed FWM showed 79.5% recognition rate,

dependency due to less data variation of Fisher weight mapby 5.0% point higher than the result by MFCC. Furhermore

produced by 10 person.
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Figure 7. Results of speaker independent
phoneme recognition by single feature.

5.5 Speaker independent phoneme recog-
nition by feature integration

FWM was combined with MFCC andAMFCC based
on a stream weighting method. The result is shown in
Fig.8. FWM improved the recognition rate by 1.4 points
and 2.9 points after combined with MFCC ardMFCC
respectively compared with original speaker independent
FWM (84.2% in Fig.7). When three features FWM, MFCC
and AMFCC were combined together, the recogntioin rate

showed the highest score 89.0% that was 1.9 points higher{

than the result of MFCCAMFCC. This indicates that the
FWM has information to improve the recognition rate ob-
tained by MFCC and\MFCC combination.

by combing FWM with MFCC and\MFCC, the recogni-
tion rate improved to 88.3%. In the speaker independent
phoneme recognition, it showed 84.2% recognition rate, by
11.0 points higher than the result by MFCC. By combining
FWM with MFCC andAMFCC, the recognition improved

to 89.0%.

As future works, we will investigate the noise robust-
ness of the proposed method because the higher order local
auto-correlation used in the method is thought to be robust
for noisy speech recognition. Another plan is to extend the
method into HMM expression and to apply it to the contin-
uous phoneme recognition. The problem of the method will
be lack of the normalization like CMN and composition of
GMM or HMM with noise components. We will investigate
these problems theoretically as studied in [4].
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