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Abstract

We have already proposed a new feature extraction
method based on higher-order local auto-correlation and
Fisher weight map (FWM) at Interspeech2006. This paper
shows effectiveness of the proposed FWM in speaker depen-
dent and speaker independent phoneme recognition. Widely
used MFCC features lack temporal dynamics. To solve this
problem, local auto-correlation features are computed and
accumulated by weighting high scores on the discriminative
areas. This score map is called Fisher weight map. From
the speaker dependent phoneme recognition, the proposed
FWM showed 79.5% recognition rate, by 5.0 points higher
than the result by MFCC. Furhermore by combing FWM
with MFCC and∆MFCC, the recognition rate improved to
88.3%. In the speaker independent phoneme recognition, it
showed 84.2% recognition rate, by 11.0 points higher than
the result by MFCC. By combining FWM with MFCC and
∆MFCC, the reecognition rate improved to 89.0%.

1. Introduction

In speech recognition, MFCC (Mel-Frequency Cepstrum
Coefficient) is widely used which is a cepstrum conversion
of a sub-band mel-frequency spectrum within a short time.
Due to the characteristic of short time spectrum, MFCC
lacks temporal dynamic features and degrades the recog-
nition rate. To overcome this defect, the regression coeffi-
cients of MFCC (delta, delta delta MFCC) are usually uti-
lized, but they are indirect expression of temporal frequency
changes such as formant transition or high frequency plo-
sives.

More direct expression of the temporal frequency
changes will be a geometrical feature in a two-dimensional
local area, for example within 3 frames by 3 frequency
bands area, on the temporal frequency domain[1]. In order
to locate such two-dimensional geometrical features, auto-
correlation within a local area is effective because it can
enhance the geometrical features. Originally this type of

feature extraction was proposed in the field of facial emo-
tion recognition [2]. Otsu computed 35 types of local auto-
correlation features within a two-dimensional local area at
each pixel on an image and accumulated them within some
discriminative areas where the typical features among all
emotions were well expressed. The map showing this dis-
criminative areas was called Fisher weight map and Otsu
employed a discriminant analysis to find this Fisher weight
map.

We have already proposed a method to find the geo-
metrical discriminative features and discriminative areas
of phonemes on the temporal-frequency domain of speech
signals by using the Fisher weight maps and showed the
effectiveness by vowel recognition[3]. In this paper, ef-
fectiveness of the proposed discriminative feature is veri-
fied through speaker dependent and speaker independent 25
phoneme recognition experiments.

In section 2 of this paper, we describe an extraction
flow of the geometrical discriminative features for phoneme
recognition. In section 3 and 4, auto-correlation coefficients
based on the local features and the Fisher weight maps are
described. In section 5, speaker dependent and speaker in-
dependent phoneme recognition experiments are shown.

2. Extraction flow of geometrical discrimina-
tive features

Fig.1 shows an extraction flow of geometrical discrimi-
native features and phoneme recognition. At first, speech
waveforms are converted into time-frequency domain by
short-time Fourier transformation. At this point, a time se-
quence of short-time spectra (frames) is obtained. Then
a moving window with consecutive several frames is put
on the time sequence of short-time spectra, forming a win-
dowed time-frequency matrix. Local features of 35 types
are computed at each position (time, frequency) within this
window, forming a local feature matrixH with the number
of positions× 35 types of local features.

Finally Fisher weight mapw is produced by applying
linear discriminant analysis (LDA) to the local feature ma-
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Figure 1. Flow of new feature extraction.

trix H. Geometrical discriminative features are obtained
as weighted higher-order local auto-correlation by summing
up the local features weighted by the Fisher weight map for
each type of local features, forming 35 dimensional vector
x for a window. By moving this window, a sequence of 35
dimensional vectors of geometrical discriminative features
are obtained.

In a phoneme recognition, phoneme GMMs are trained
at first. Then the test speech data is converted into a se-
quence of 35 dimensional vectors of geometrical discrimi-
native features and phoneme likelihood is computed using
the trained phoneme GMMs.

3 Local features and weighted higher order
local auto-correlations

3.1 Local features

Two-dimensional geometrical and local features are ob-
served on the time-frequency matrix shown on the left in
Fig.2. On the right hand side,3×3 local patterns are shown
to capture the local features. The upper pattern is for con-
tinuation in a time direction, the middle for continuation in
a frequency direction and the lower for transition. The flag
”1” indicates the multiplication of the spectrum on the po-
sition.

A local feature within thek-th local pattern at a position
r is formalized as follows;

h(k)
r = I(r)I(r + a

(k)
1 ) · · · I(r + a

(k)
N ) (1)
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Figure 2. Local features.
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Figure 3. 35 types of local patterns.

whereI(r) is the power spectrum at the positionr on time-
frequency matrix composed of timet and frequencyf . The
r + a

(k)
i indicates the other position, where ”1” is attached,

within thek-th local pattern.
By limiting local patterns within 3 frames× 3 bands

area at reference positionr, setting the orderN to be 2 and
omitting the equivalence of translation, the number of dis-
placement set (a1, · · · , aN ) becomes 35. Namely 35 types
of local patterns are obtained at each positionr on the time-
frequency matrix as shown in Fig.3, according to Otsu[2].

3.2 Weighted higher order local auto-
correlations

Higher-order local auto-correlationxk for thek-th local
pattern is obtained by summing the local features shown
in Eq.1 on the time-frequency matrix. It is formalized as
follows;



xk =
∑

r

h(k)
r

=
∑

r
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(k)
1 ) · · · I(r + a
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In order to express the higher-order local auto-
correlation in the matrix form, all the local features shown
in Eq.1 for thek-th local pattern are collected on the time-
frequency matrix and presented as a following vector.

h(k) = [h(k)
2,2 · · ·h(k)

2,T−1, · · ·h(k)
F−1,T−1]

t (3)

here the dimension of the vector isM = T − 2 (time)×
F − 2 (frequency).

The higher-order local auto-correlationxk for the k-
th local pattern is expressed as follows using theM -
dimensional vectorh(k).

xk = h(k)t1 (4)

A local feature matrix is obtained as follows by placing
the M-dimensional vectorsh(k) in the horizontal direction
one by one for all the 35 local patterns.

H = [h(1) · · ·h(K)] (5)

The higher-order local auto-correlation vectorx is ob-
tained by packing thexk and is expressed as follows;

x = [x1 · · ·xK ]t = Ht1 (6)

Fig.4 shows an example of computing the local feature
matrix H. Here, moving 35 local patterns on the windowed
time-frequency matrix (9 × 6), the local features are com-
puted. These local features are packed into the local feature
matrixH (28× 35). The higher-order local auto-correlation
vectorx presents the existence of the local patterns on all
over the time-frequency matrix. Therefore, it is not the dis-
criminative vector. In order to make the higher-order lo-
cal auto-correlation vectorx have the discriminative ability,
local features of the same local pattern are summed over
the windowed time-frequency matrix by putting the high
weight on the local features where class difference appears
clearly. This is done by replacing the vector1 consisting
of M ”1”s by the weighting vectorw. Then the weighted
higher-order local auto-correlation vectorx is obtained as
follows;

x = Htw (7)

Herew is called Fisher weight map because it is computed
based on linear discriminant analysis.
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Figure 4. Local feature matrix.

4 Fisher weight map

In order to find the Fisher weight map, Fisher’s discrim-
inative criterion is utilized[2]. LetN be the number of
training data. Then the local feature matrices for the train-
ing data are denoted as{Hi ∈ RM×K}N

i=1. The corre-
sponding weighted higher-order local auto-correlation vec-
tors, the within-class covariance matrix and the between-
class covariance matrix are denoted as{xi}N

i=1, Σ̃W and
Σ̃B respectively. Then the Fisher discriminative criterion
J(w) is expressed as follows using those denotations.

J(w) =
trΣ̃B

trΣ̃W

=
wtΣBw
wtΣW w

(8)

whereΣW and ΣB is the within-class covariance matrix
and the between-class matrix of the local feature matrices
(training data).

The Fisher weight map is obtained as eigen vectorsw
based on the following generalized eigen value decomposi-
tion derived by maximizing the Fisher discriminative crite-
rion under the constraint such thatwtΣW w = 1

ΣBw = λΣW w (9)

Since the Fisher weight map is composed of several eigen
vectors, the number of eigen vectors is optimized in the
phoneme recognition process.

However, if the number of eigen vectors are set to 25,
the weighted higher-order local auto-correlation vectorx
shown in EQ.7 equals to 875 (35× 25) dimensional vector.
It is so high that the GMM used in the phoneme recognition
can not be estimated accurately and stably. To solve this
problem, PCA (Principal Component Analysis) is used to
reduce the dimension effectively.



5 Phoneme recognition experiments

5.1 Experimental setup

We carried out speaker dependent and independent
Japanese 25 phoneme recognition. Speech material was
continuous speech data spoken by six male speakers and
four female speakers and was manually segmented into
phoneme sections. In the speaker dependent phoneme
recognition, 2578 data (about 100 data for each phoneme)
segmented by hands for all phonemes were collected from
individual speaker and used for phoneme training (Fisher
weight map and phoneme GMMs) . Other 2578 phoneme
data from individual speaker were tested. Phoneme recog-
nition rate was computed by averaging the results from ten
speakers.

On the other hand, in the speaker independent phoneme
recognition, the training data from ten speakers were
collected together and used for Fisher weight map and
phoneme GMMs training. In the phoneme recognition, the
test data from individual speaker was tested in the same way
as the speaker dependent manner.

Speech waveform was transformed into time-frequency
matrix by short-time Fourier transformation with 25ms
frame width and 10ms frame shift. Then the frequency
was converted into mel-scale by mel-fiter bank (64 dimen-
sion). A window withT frame width andS frame shift
was moved on the time-frequency matrix and the windowed
time-frequency matrices were generated. T and S were op-
timized experimentally to 5 and 1 respectively. The number
of eigen vectorsW included in the Fisher weight map and
the number of Gaussian mixturesG in phoneme GMM were
experimentally optimized in the phoneme recognition. The
number of dimensionsD of the weighted higher-order local
auto-correlation vectorx reduced by PCA was also experi-
mentally optimized.

5.2 Speaker dependent phoneme recogni-
tion using single feature

Fig.5 shows the results of speaker dependent phoneme
recognition using the proposed feature, compared with the
recognition result using MFCC.

The highest phoneme recognition rate 79.5% was ob-
tained by the proposed feature with the number of eigen
vectorsW = 25 (35× 25=875 dimensions) in the Fisher
weight map, the number of dimensionsD = 150 of the
weighted higher-order local auto-correlation vectorx re-
duced by PCA and the number of Gaussian mixturesG =
8 in the phoneme GMMs. Compared with MFCC and
∆MFCC, the recognition rate was improved by 5 points
and 3.7 points respectively due to the direct expression of
temporal features by the proposed method. When the PCA
was not applied, since the dimension is so high as 875, the
recognition rate was almost same as that of MFCC.
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Figure 5. Results of speaker dependent
phoneme recognition using single feature.

5.3 Speaker dependent phoneme recogni-
tion by feature integration

Since FWM showed the highest phoneme recogntion
rate using single feature, it was combined with MFCC and
∆MFCC in the phoneme recognition. The feature combi-
nation was based on a stream weighting method which con-
catenated two or more feature vectors by weighting the re-
spective feature. The weight was experimentally optimized,
changing the weight ratio from 0.0:1.0 to 1.0:0.0 by 0.1
step. In this case, the dimension of FWM was decreased
to 55 from 150 due to computation time.

Fig.6 shows the phoneme recognition result. FWM im-
proved the recognition rate by 2.6 points and 6.0 points after
combined with MFCC and∆MFCC respectively compared
with original FWM (79.5% in Fig.5). Comibination of two
features MFCC and∆MFCC still showed the highest score
86.7%. When three features FWM, MFCC and∆MFCC
were combined together, the recogntioin rate showed the
highest score 88.3%. This indicates that the FWM has in-
formation to improve the recognition obtained by MFCC
and∆MFCC combination.
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Figure 6. Results of speaker dependent
phoneme recognition by feature integration.



5.4 Speaker independent phoneme recog-
nition using single feature

Fig.7 shows the results of speaker independent phoneme
recognition using the proposed feature FWM, compared
with the recognition result using MFCC.

The highest phoneme recognition rate 84.2% was ob-
tained by the proposed feature FWM with the number of
eigen vectorsW = 35 (35× 35=1225 dimensions) in the
Fisher weight map, the number of dimensionsD = 50, in-
stead ofD = 150, of the weighted higher-order local auto-
correlation vectorx reduced by PCA and the number of
Gaussian mixturesG = 8 in the phoneme GMMs. Com-
pared with MFCC and∆MFCC, the recognition rate was
improved by 11 points and 9.2 points respectively due to ac-
cumulation of the direct expression of temporal features of
10 person by the proposed method. Compared with speaker
dependent result shown in Fig.5, the result of MFCC and
∆MFCC decreased due to data variation. However the re-
sult of FWM showed 4.7 points improvement by speaker in-
dependency due to less data variation of Fisher weight map
produced by 10 person.
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Figure 7. Results of speaker independent
phoneme recognition by single feature.

5.5 Speaker independent phoneme recog-
nition by feature integration

FWM was combined with MFCC and∆MFCC based
on a stream weighting method. The result is shown in
Fig.8. FWM improved the recognition rate by 1.4 points
and 2.9 points after combined with MFCC and∆MFCC
respectively compared with original speaker independent
FWM (84.2% in Fig.7). When three features FWM, MFCC
and∆MFCC were combined together, the recogntioin rate
showed the highest score 89.0% that was 1.9 points higher
than the result of MFCC+∆MFCC. This indicates that the
FWM has information to improve the recognition rate ob-
tained by MFCC and∆MFCC combination.
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Figure 8. Results of speaker independent
phoneme recognition by feature integration.

6 Conclusion

We described the new feature extraction method based
on higher-order local auto-correlation and Fisher weight
map (FWM). The effectiveness was verified through
speaker dependent and speaker independent phoneme
recognition. From the speaker dependent phoneme recog-
nition, the proposed FWM showed 79.5% recognition rate,
by 5.0% point higher than the result by MFCC. Furhermore
by combing FWM with MFCC and∆MFCC, the recogni-
tion rate improved to 88.3%. In the speaker independent
phoneme recognition, it showed 84.2% recognition rate, by
11.0 points higher than the result by MFCC. By combining
FWM with MFCC and∆MFCC, the recognition improved
to 89.0%.

As future works, we will investigate the noise robust-
ness of the proposed method because the higher order local
auto-correlation used in the method is thought to be robust
for noisy speech recognition. Another plan is to extend the
method into HMM expression and to apply it to the contin-
uous phoneme recognition. The problem of the method will
be lack of the normalization like CMN and composition of
GMM or HMM with noise components. We will investigate
these problems theoretically as studied in [4].
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