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ABSTRACT

In our previous work, the use of PCA instead of DCT shows
robustness in distorted speech recognition because the main
speech element is projected onto low-order features, while
the noise or distortion element is projected onto high-order
features [1]. This paper introduces a new feature extraction
technique that collects the correlation information among
phoneme subspaces and their elements are statistically mutual
independent. The proposed speech feature vector is generated
by projecting observed vector onto integrated space obtained
by PCA and ICA. The performance evaluation shows that the
proposed method provides a higher isolated word recogni-
tion accuracy than conventional methods in some reverberant
conditions.

Index Terms— Speech recognition, Feature extraction,
Subspace integration, PCA, ICA,

1. INTRODUCTION

In the case of distant or hands-free speech recognition, sys-
tem performance decreases sharply due to ambient noises.
Hence, there have been many studies carried out on robust
feature extraction: RASTA speech processing [9], channel
normalization [10], noise estimation [11], dereverberation
[12], speech enhancement or separation based on Principal
Component Analysis (PCA) [13, 14, 15], and so on.

In recent years, MFCC (Mel-Frequency Cepstrum Coefti-
cient) is the widely used speech feature. However, since the
feature space of MFCC by DCT (Discrete Cosine Transform)
is not directly dependent on speech data, the observed signal
with noise does not show good performance. In [2], the use
of subspace method by PCA (Principal Component Analysis)
shows robustness in noisy speech recognition. And in [1], the
use of PCA also shows robustness in distorted speech recog-
nition. That is because clean speech components are extracted
from observed signal by projecting observed signal onto the
speech subspace which retains the structure of the speech.

This paper proposes a new feature extraction technique
that collects the statistically independent information among
phonemes by projecting input vector onto integrated space

by applying ICA (Independent component analysis) and sub-
space method maintaining robustness. The evaluation ex-
periments by isolated word speech recognition for clean and
reverberant speech show the effectiveness of the proposed
method.

The content of this paper is as follows: In section 2, we
describe the conventional feature extraction method using
PCA or ICA. In section 3, we propose a new feature extrac-
tion method based on section 2 In section 4, we describe our
speech recognition experiments using the proposed method
and discuss about the result. Finally, conclusions are drawn
in section 5.

2. CONVENTIONAL METHODS

2.1. Feature Extraction by PCA

Principal Component Analysis (PCA) is defined as an orthog-
onal linear transformation that transforms data to a new coor-
dinate system. This is also usually used for dimensionality
reduction and decorrelation of feature coefficients.

The P-dimensional data vector at 7-th frame is denoted as
x, here. The covariance matrix S is derived as follow.
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Here X is a mean vector. The eigenvectors that make the new
coordinate system are computed by eigenvalue decomposition
of the covariance matrix S as follow:

Sbi = A, (k=1,2,---,P) 2

where ¢ is an eigenvector corresponding to the eigenvalue
Ar. Selecting Q(< P) eigenvectors corresponding to the Q
largest eigenvalues, the new feature vector y, is obtained by
the following equation.

y = ' (x, — %) 3)
D= (¢1,02, o) )

The eigenvalue estimated by PCA means the variance
within the data. In clean speech data, the important speech



components for speech recognition have generally large vari-
ation. By selecting eigenvectors corresponding to some large
eigenvalues to make the new projected space, it is possible to
extract only the effective components.

Also, for convolution noise (distortion), PCA-based fea-
ture extraction is applied to the log mel-scale filter bank
output [1] because we expect that PCA will project the main
speech element onto low-order features, while convolution
noise (distortion) elements will be projected onto high-order
ones. Our recognition results show that the use of PCA
instead of DCT provides better performance for distorted
speech.

2.2, Feature Extraction by ICA

Independent component analysis is a method for separating a
mutual independent source signals from mixed signals. ICA
has broad field of application. In [4], ICA was used to speech
feature extraction. It is assumed that the observed speech vec-
tor x by short time (ST)-DFT is supposed to be linearly cou-
pled as x = As, where A is mixing matrix and s is source
vector, To extract independent components vector s* = Wx,
we have to estimate W by maximizing the statistical indepen-
dence of the estimated components. The statistical indepen-
dence is usually represented by negentropy or kurtosis that is
fourth-order cumulant. And maximization of statistical inde-
pendence is implemented in gradient algorithm or fixed-point
algorithm. It is shown in [4] that W obtained by applying
ICA to speech data set from single microphone, worked like
band-pass filter.

In this paper, we use FastICA [3] that is based on fixed-
point iteration scheme using negentropy. The FastICA algo-
rithm for finding one w that derives one independent compo-
nent is as follow :

1. Center the data to make its mean zero.
2. Whiten the data to give z.
3. Choose an initial vector w of unit norm.

4. Let w «— E{zg(w'z)} — E{g’(w'z)}w, where ¢ is the
function that gives approximations of negentropy.

5. Letw « w/||w]|.
6. If not converged, go back to step 4.

To estimate more independent components, different kinds of
decorrelation schems should be used; refer to [3] for more
information.

3. PROPOSED METHOD

In this paper, we consider a method of incorporating informa-
tion dealing with the relation between phonemes into feature
space. The most commonly used feature space, MFCC, is
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Fig. 1. Observation space and phoneme subspaces using PCA

obtained analytically by applying DCT to Log MFB (Mel-
frequency Filter Bank). This space does not contain any in-
formation associated with inter-phoneme relationships. Fol-
lowing is an explanation of the proposed method to construct
a new feature space ( transformation matrix ) using PCA and
ICA.

Following is an explanation of the method we used to
make the feature space using PCA and ICA. Our previous
method [1] involved applying PCA to the set of the whole
clean speech, but the proposed method in this paper in-
volves dividing the whole speech data into data sets for each
phoneme and then applying PCA to each of these phoneme
data sets. Herewith, the structures of the phoneme data are
obtained. Subsequently, we make the new feature space
by merging these phoneme subspaces using ICA. This new
feature space contains the information that is about the corre-
lation among phonemes and statistically mutual independent.

3.1. Phoneme subspaces using PCA

In this subsection, we define phoneme subspaces and feature
vector projected onto these subspaces using PCA.

As in (3) and (4), the feature vector yf projected onto the
i-th phoneme subspace @' is defined as follow:

yi =0 (x, - %) 5)
O = (4], 4h, -, bp) (6)
Here, we set all phoneme subspace dimensionality as Q to be
same as a matter of convenience. And, we define V (the ma-

trix of the whole phoneme subspace) and C (the mean vector
of the whole phoneme) as follows:

V=[0,o. .. o]
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Fig. 2. Speech feature extraction process

M means the number of phonemes. Finally, super vector y, is
obtained by concatenating y' as follow:
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Fig. 1 shows the basic concepts of phoneme subspaces. From
observation space, we derive M phoneme subspaces.

3.2. Integration of Phoneme subspaces using ICA

The super vector, y, defined in the preceding subsection has a
very large dimension ( Mx Q) and many elements with similar
trend. To compress the dimensionality and extract correlation
information among phonemes, FastICA is applied to the set of
super vectors y. Let V” as the transformation matrix that in-
tegrates phoneme subspaces obtained by ICA. Our proposed
speech feature vector y is generated as follow:

v =Vy =V Vix-ch. )

Fig. 2 shows the process to obtain proposed speech feature
vector y; from the speech signal. y; is normalized and time
derivatives are added to input HMM for training and test.

4. ISOLATED WORD RECOGNITION
EXPERIMENTS

4.1. Experiment conditions

In order to confirm the efficiency of the proposed method,
the speech data were extracted from the A-set of the ATR

Table 1. The number of frames used to calculate subspace
and the dimension

Transformation | Frames | Dimension |
LogMFB - 32
DCT (MFCC) - 16
@ (PCA) 4000 16
V (phoneme subspaces by PCA) | 54 x 100 54 x 16
V’ (integrated subspace by ICA) 4000 16

Japanese database and the room impulse response was ex-
tracted from the RWCP sound scene database [5]. The total
number of speakers was four (2 males and 2 females). The
training data was composed of 2,620 utterances per speaker,
and 1,000 clean or reverberant utterances made by convolv-
ing impulse responses were used for testing per speaker.
Speech signals were digitized into 16 bits at a sampling fre-
quency of 12 kHz. For spectral analysis, an ST-DFT was
performed on 32-ms windowed and 8-ms shifted frames.
Next, a 32-channel mel-frequency filter bank (MFB) analysis
was performed on the above components. The logarithms
of MFB components were then computed. The experiments
were conducted to compare MFCC, PCA, PCA-PCA (in-
tegrating subspaces by PCA), and PCA-ICA (integrating
subspaces by ICA; proposed method) with mean normalized
coefficients (16 Dim. + A 16 Dim.). These analyses were
realized by using HTK toolkits[6]. The models of 54 context-
independent phonemes were trained by using four sets of
2,620 clean words spoken by four speakers respectively to
construct common HMMs. Each HMM has three states and
three self-loops, and each state has four Gaussian mixture
components. Table 1 shows the conditions for estimating the
projection matrices V, V', and C in (7) or (9).

4.2. Results

Fig. 3 shows the results of isolated word speech recognition.
The recognition rate means the average of the four speak-
ers. As the reverberation time lengthens, the recognition rate
declines. Especially the rate decrease sharply over 300ms
reverberation time. It is shown that the proposed method
outperforms MFCC in all reverberant conditions. However,
our method shows somewhat lower performance than PCA
and PCA-PCA in clean or short reverberant conditions. We
think this result was given by two main reason. Firstly, the
phoneme subspaces were not optimized because the dimen-
sions of phoneme subspaces were set to be equal. It is think-
able that the integrated feature subspace was affected by unde-
sired subspaces. Secondly, in this experiment, we used whole
proposed feature vector as input to simple HMMs. Each ele-
ment of proposed feature vector ranges independently of each
other. So simple HMMs is not expressive for this feature vec-
tor. Therefore we are going to investigate how to find opti-
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Fig. 3. The results of isolated word speech. Ave. for 4 speak-
ers.

mal dimensionality and how to make acoustic model based
on HMM using independent components by reference to [7]
and [8]

S. CONCLUSIONS

We proposed the new speech feature extraction method which
emphasizes the phonetic information from observed speech
using PCA and ICA. The proposed method is to extract
speech feature that contains the correlated information among
phoneme subspace and their elements are statistically mutual
independent. The experiment results on isolated word recog-
nition under clean and 360-ms reverberant conditions show
that the proposed method outperforms conventional method
using MFCC. However our method shows somewhat lower
performance than PCA and PCA-PCA. Our next step is to
study how to make the optimized phoneme-subspaces and
how to make acoustic model based on HMM using inde-
pendent components by our methods. The proposed method
can be combined with other methods, such as speech signal
processing or model adaptation, to improve the recognition
accuracy in real-life environments.
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