音素 PCA を用いた残響下における音声特徴量抽出

朴 玄信[†] 滝口 哲也[†] 有木 康雄[†]

† 神戸大学工学研究科 〒 657-8501 兵庫県神戸市灘区六甲台町 1-1 E-mail: †silentbattle@me.cs.scitec.kobe-u.ac.jp, ††{takigu,ariki}@kobe-u.ac.jp

あらまし 本稿では, PCA (Principal Component Analysis) に基づく新しい固有音素部分空間法を用いた残響にロバ ストな特徴量抽出法を提案する. 雑音にロバストな特徴量抽出手法は多く提案されているが,加法性あるいは乗法性 雑音を完璧に抑圧するのは難しい問題として残されている.特に非定常雑音を推定し,抑圧するのは難しい.音声認 識分野において最も使われている特徴量はMFCCである.MFCCは対数メル周波数フィルタバンク出力にDCTを 適用することにより得られる特徴量である.DCTの代わりにPCAを用いることで,観測データの主な音韻成分は低 次特徴量空間へ射影され,加法性あるいは乗法性雑音は高次特徴量空間へ射影される.本論文ではPCA 手法と部分 空間法をベースに音素 PCA 手法を提案する.各音素データに対してPCA を行い,得られた各音素部分空間をマージ した固有音素部分空間を新しい特徴量空間とする手法である.この空間上のベクトルを音素ベクトルとする.評価実 験により,提案手法の特徴量は従来手法より残響時間が長くなるほど有効であることが確認できた.

Feature Extraction Using Phoneme PCA for Reverberant Speech Recognition

Hyunsin PARK[†], Tetsuya TAKIGUCHI[†], and Yasuo ARIKI[†]

† Graduate School of Engineering, Kobe University Rokkodaicho 1–1, Nada-ku,Kobe,Hyogo, 657–8501 Japan

E-mail: †silentbattle@me.cs.scitec.kobe-u.ac.jp, ††{takigu,ariki}@kobe-u.ac.jp

Abstract In this paper, we propose a novel subspace approach for robust speech feature extraction in reverberant environments using PCA. While much research for robust speech feature extraction has been done, it remains difficult to completely remove additive or convolutional noise. Particularly, it is difficult to estimate and suppress nonstationary noise. The most commonly used speech feature for speech recognition is MFCC that is computed applying DCT to the mel-scale filter bank output. Using PCA instead of DCT, where the main speech element is projected onto low-order features while the additive or convolutional noise is projected onto high-order features, speech recognition is improved. We propose Phoneme-PCA that is applying PCA to specific phoneme data set and merging subspaces representing unique feature in each phoneme. The performance evaluation shows that the proposed method provides a higher noise reduction and speech recognition accuracy compared with conventional methods.

Key words PCA, Subspace method, Phoneme vector, Suppression of reverberation, Word recognition

1. はじめに

近年,音声認識システムはクリーン音響環境において優れた 性能を示している.しかし,ユーザがマイクロフォンから遠い 位置で発話すると,加法性雑音や乗法性雑音の影響で認識率は 急激に低下する.

この問題を解決するために,多くの研究が行われてい

る [1] [2] [3] [4] [5] [6] [7] . 例えば, CMS (Cepstral Mean Subtraction) や RASTA は電話回線や短時間インパルス応答をも つマイクロフォンにおいて,その効果が確かめられている.し かし,インパルス応答時間が音響分析窓長よりはるかに長い残 響下で観測された音声データに対しては十分な性能が得られ ない.

その他, PCA や KPCA (Kernel PCA)[8] をベースにした

観測データ内の特定情報だけを強調する手法もこれまでに提 案されている [9] [10] [11] . 特定話者のクリーン音声に音韻性と 話者性だけが含まれていて,話者内で大きい分散(低次)をも つ部分空間を音韻部分空間,小さい分散(高次)をもつ部分空 間を話者部分空間と仮定すると,この二つの空間は無相関であ る.直交基底ベクトルをもとめる PCA(Principal Component Analysis)を用い,観測データを音韻部分空間へ射影すること で,音韻性を強調することができる.

本研究では, PCA 手法と部分空間法をベースに残響下音声 認識における新しい音声特徴量抽出法を提案する.各音素デー タに対し PCA を行い,音素性を強調する部分空間を作成した 後,各音素部分空間をマージし,この全音素部分空間へ射影す ることで各音素空間の相関情報も取り入れることができる.本 研究ではこの全音素部分空間を作成する手法を音素 PCA 法と 呼ぶことにする.

2章は提案手法のベースになる PCA による残響抑制法につ いて概説した後,3章で提案手法である音素 PCA について説 明し,4章で評価実験を行い提案手法の有効性を確かめる.最 後に5章でまとめとして今後の課題について述べる.

2. PCA による残響抑制

ー般的に観測されたひずみ音声のスペクトル X_n(ω) は次の ようにクリーン音声と乗法性雑音の積で表される.

$$X_n(\omega) = S_n(\omega) \cdot H_n(\omega) \tag{1}$$

ここで $S_n(\omega)$ と $H_n(\omega)$ は周波数 ω , n 番目フレーム(n 番目 分析窓)における, クリーン音声短時間スペクトルと乗法性雑 音(音響伝達関数)を表す.しかし,残響時間が分析窓長より 長い環境で観測されるスペクトルは式(2)のように,式(1) の右辺に一定時間過去の音声信号に対する反響音が加算される.

$$X_n(\omega) = S_n(\omega) \cdot H_n(\omega) + \sum_{d=1}^N S_{n-d}(\omega) \cdot H_{n-d}(\omega)$$
 (2)

ここで $S_{n-d} \ge H_{n-d}$ は (n-d)のフレームにおけるクリーン 音声信号と乗法性雑音であり, N はインパルス応答の長さを 表す.

式(2)の両辺に対数演算を行い,右辺を式3のようにクリーン音声項とそれ以外の項に分ける.

$$X_{log_n}(\omega) = S_{log_n}(\omega) + \frac{\sum_{d=1}^{N} S_{n-d}(\omega) \cdot H_{n-d}(\omega)}{S_n(\omega)} \}$$
(3)

ここで, $X_{log_n}(\omega) \ge S_{log_n}(\omega)$ は n 番目フレームにおける観 測信号の対数スペクトルとクリーン音声信号の対数スペクトル である.

次に, PCA を用いたフィルタリング手法は次式のように観 測信号と射影行列の内積となる.

$$\hat{S} = V^T X_{log} \tag{4}$$

フィルタVは,クリーン音声の相関行列(共分散行列)の固有 値展開によって得られた固有ベクトルから構成される.これら の固有ベクトルは,大きい順でソートされた固有値に対応する 固有ベクトルであり,音韻性を表す次元がL次元だとすると次 のように表現できる.

 $V = [v^{(1)}, v^{(2)}, \cdots, v^{(L)}]$ (5)

 $\hat{S} \geq X_{log}$ は縦ベクトルである. $\hat{S} \in \mathbb{R}^{L}$, $X_{log} \in \mathbb{R}^{P}$, $V \in \mathbb{R}^{P \times L}$ そしてL < P. クリーン音声データ全体に対し PCA を適用すると,音韻性は分散が大きい(エネルギーが強 い)固有ベクトルで表され,雑音性は分散が小さい(エネル ギーが弱い)固有ベクトルで表される.また,音韻性と雑音性 を表す固有ベクトル間は相関が低い.その結果,観測データの 音韻性を表す成分は部分空間 V へ射影され,雑音成分はその 補空間 $[v^{(L+1)}, v^{(L+2)}, \dots, v^{(P)}]$ へ射影される.これは,PCA により得られる新しい軸は互いに直交であるためである.式 (3)の右辺の第2項は残響時間が長くなると第1項との相関が 低いと仮定できる.その時式(4)のように,観測信号からの 現在フレームの音韻情報を強調することができる.

音声認識システムでは*MFCC*(Mel-Frequency Cepstrum Coefficient)がよく用いられる.これは対数メル周波数フィルタ バンク出力(FBANK)に離散コサイン変換(Discrete Cosine Transform: DCT)を適用した特徴量である.*MFCC*の低次 元は時間領域におけるスペクトルの包絡を表す.FBANKに DCTを適用代わりに,PCAによる射影変換を行った特徴量が 残響にロバストであることが[11]で確認されている.

3. 音素 PCA による残響抑制

現在音声認識システムにおける特徴量空間は各地域の言語に よることなく, *MFCC* が一般的に使われている.しかし,各 地域の言語によって用いている音素の種類には差が存在する. 音素モデル作成前の特徴量抽出段階で,特徴量空間に音素種類 情報を取り入れることで,各地位の言語に特化した特徴量空間 を作成できる.さらにこの空間は,音声データの音素性を強調 する空間であるため,雑音の抑圧性能も期待できる.

2章で, PCA による残響抑制法について概説した.PCA に よる従来手法はクリーン音声データに対して PCA を行うが, 提案手法の音素 PCA はクリーン音声データの中の音素毎の データに対して PCA を行なう.音声データに対して PCA を 適用すると音韻成分は分散が大きい(変動が大きい)軸に現れ るが,音素データに対して PCA を適用すると音素成分は分散 が小さい(変動が少ない)軸に現れる.なぜなら,音声データ は多くの音素データからなっていて,音素を区別するために有 効な成分(音韻成分)は変動の大きい成分であるが,音素デー タは特定音素だけのデータであるため,その音素を特定するた めに有効な成分(音素成分)は変動の少ない共通成分になるか らである.従って,提案手法では分散が小さい固有ベクトルを 音素部分空間の基底ベクトルとする.各音素の部分空間を求め た後,これらの部分空間を原点を合わせてマージし,全音素部 タは,同一音素部分空間の原点付近に射影され,他の音素部分 空間の原点から離れたところに射影される.

図2と図3は/aida/と発音した元のデータのスペクトルと, 全音声データに対するPCAと音素/a/データに対するPCAを 適用し得られた射影行列でフィルタリングした後,逆変換で得 られたスペクトルである。横軸が時間,縦軸が周波数で,元の 周波数は256次元,射影された空間は50次元になっている./a ida/と発音した元のデータのパワースペクトルが図2の左図 で,音声データに対するPCAで得られた空間へ射影した値を 逆変換したパワースペクトルが右図である.PCAにより元の データのフォルマントが強調されていることが分かる.図3で は音素/a/データに対してPCAを行い得られた分散の大きい固 有ベクトル(左図)と分散の小さい固有ベクトル(右図)で構 成されたフィルタによるスペクトルである.左図より右図の/a/ のフォルマントの形が元の形と似ていることがわかる.分散が 小さい(エネルギーが弱い)軸へ射影されたため,パワースペ クトルの値は低いが音素/a/のフォルマントの形は残っている.

全音素部分空間は各音素部分空間をマージした空間であるため、定義した音素数に比例して大きくなる.従って本稿では得られた音素ベクトルに対し次元削減の意味で、もう一回 PCAを適用する.従って,提案手法では2回のフィルタリングが行われることになる.2回のフィルタリング時に用いる射影行列を $V_p \ge V_c \ge$ する. V_p は各音素データに対し PCA を行い得られた各音素部分空間を統合した空間の基底ベクトルである. V_c は V_p により大きくなった次元を削減するための射影行列である.

本論文では, 音素 PCA を行い得られた全音素部分空間を 固有音素部分空間(Eigen Phoneme Subspace: EPS), この 固有音素部分空間へ射影された特徴ベクトルを音素ベクトル (Phoneme Vector: PV)と呼ぶことにする.

3.1 音素ペクトル

先ず,i番目音素の平均ベクトルを $M_{p_{-i}} \in \mathbb{R}^P$ とし,音素部 分空間 $V_{p_{-i}} \in \mathbb{R}^{P \times K}$ を次のように定義する.

$$V_{p_{-i}} = [v_{p_{-i}}^1, v_{p_{-i}}^2, \cdots, v_{p_{-i}}^K]$$
(6)

 \boxtimes 1 Observation space and phoneme subspaces.

 $\boxtimes 2$ Speech spectrogram of original and by PCA filter of the clean Japanese utterance /a i d a/.

図 3 Speech spectrogram by major and minor /a/-PCA filter of the clean Japanese utterance /a i d a/.

ここで P は元の特徴量空間の次元, K は各音素部分空間の次 元, $v_{p_{-i}}^{j} \in \mathbb{R}^{P}(j = 1, 2, \cdots, K)$ は小さい順でソートされた固 有値 K 個に対応する固有ベクトルで, 縦ベクトルになってい る.これは i 番目音素部分空間の基底ベクトルといえる.

続いて,マージした全音素部分空間 $V_p \in \mathbb{R}^{P \times (K \times N)}$ と全音素平均ベクトル $M_p \in \mathbb{R}^{P \times N}$ は次のようになる.

$$V_{p} = [V_{p-1}, V_{p-2}, \cdots, V_{p-N}]$$

$$M_{p} = [M_{p-1}, M_{p-2}, \cdots, M_{p-N}]$$
(7)

ここで N は音素種類の数を表し,特徴空間設計時に任意に変 更が可能である.

観測信号 $X_{log} \in \mathbb{R}^{P}$ を縦ベクトルとして,次のように固有 音素部分空間へ射影する.

$$PV_{1} = \begin{bmatrix} PV_{1.1} \\ PV_{1.2} \\ \vdots \\ PV_{1.N} \end{bmatrix}$$
$$= \begin{bmatrix} V_{p.1}^{T} [X_{log} - M_{p.1}] \\ V_{p.2}^{T} [X_{log} - M_{p.2}] \\ \vdots \\ V_{p.N}^{T} [X_{log} - M_{p.N}] \end{bmatrix}$$
$$= \begin{bmatrix} V_{p.1}^{T} X_{log} - V_{p.1}^{T} M_{p.1} \\ V_{p.2}^{T} X_{log} - V_{p.2}^{T} M_{p.2} \\ \vdots \\ V_{p.N}^{T} X_{log} - V_{p.N}^{T} M_{p.N} \end{bmatrix}$$
$$= V_{p}^{T} X_{log} - C_{p}$$
$$(8)$$

ここで, $C_p = [C_{p,1}^T, C_{p,2}^T, \cdots, C_{p,N}^T]^T$, $C_{p,i} = V_{p,i}^T M_{p,i}$. $PV_1 \in \mathbb{R}^{N \times K}$ は固有音素部分空間における音素ベクトルである.

3.2 音素ベクトルの次元削減

前節で V_p, C_p, PV₁ を定義した.この時 PV₁の次元数は

 $N \times K$ であり,次元数が大きい問題が残されている.そこで, クリーン音声からの特徴量 PV_1 に対してもう一回 PCA を行 い,次元圧縮を試みる.次元圧縮のための PCA で得られた射 影行列を V_c とすると,低次元空間へ射影された新しい特徴量 PV_2 は次式のように表される.

$$PV_2 = V_c^T P V_1 \tag{9}$$

ここで, $V_c = [v_c^1, v_c^2, \cdots, v_c^{K'}] \cdot v_c^j \in \mathbb{R}^P (j = 1, 2, \cdots, K')$ は 大きい順にソートされた K'個の固有値に対応する固有ベクト ルで,縦ベクトルである.次元圧縮の意味での PCA であるた め,音素 PCA ステップ1の時とは逆に,分散が大きい順で射 影行列を作成している.K'の値を調整しながら実験すること で,最適値を見つけることができる.

4. 認識実験

4.1 実験データ

残響下の日本語 500 単語の認識実験を行い,提案手法の有効 性を検討する.残響音声の作成には RWCP 実環境音声・音響 データベース [12] より残響インパルス応答を用いた.残響イン パルス応答とクリーン音声を畳み込み演算することで残響音声 が得られる.残響インパルス応答の例を表1に示す.

Time (ms)	Room	
50	Anechoic room	
120	Echo room(cylinder)	
300	Echo room(panel)	
380	Echo room(cylinder)	
470	70 Tatami - floored room (S)	
600	Tatami - floored room (L)	
1300	Echo room(panel)	

表 1 Reverberant conditions

4.2 実験条件

音声波形はハミング窓を用い短時間離散フーリエ変換を行う ことでスペクトルに変換される.音響分析条件の詳細を表2に 示す.スペクトルに対する対数メルフィルタバンク出力32次 元(FBANK)をベース特徴量とする.これらの音響分析と特 徴量抽出には HTK-toolkit [13]を用いた.

Sampling bits	16 bits
Sampling rate	$12 \mathrm{~kHz}$
Window width	32 ms
Window shift	$8 \mathrm{ms}$

射影行列V, V_p , V_c と平均ベクトル M_p は主成分分析により 求まる. クリーンの音声データから得られた特徴量 FBANK を用いてこれらは計算される. その時,計算に用いるフレーム 数と特徴量の次元数を表 3 に示す.本実験では 4 つの特徴量 (*MFCC*, *PCA*, *PV*₁, *PV*₂)を用い,比較実験を行う.*MFCC* は音声認識分野で広く使われている特徴量で, *FBANK* に離 表 3 The number of frames used to calculate filter and feature dimension

Filter (Feature)	Frames	Dimension
(FBANK)	_	32
DCT (MFCC)	_	16
V (<i>PCA</i> : Feature by PCA)	3000	16
$V_p \ (PV_1: \text{PV on EPS})$	100×54	5×54
$V_c (PV_2: PV \text{ on compressed EPS})$	3000	Adjusting

散コサイン変換 (DCT)を行うことで得られる.又, PCA は ベース手法である PCA による残響抑制手法による特徴量で, 射影行列 V から計算できる.最後に $PV_1 \ge PV_2$ は提案手法 である音素 PCA を用いて得られた固有音素部分空間(EPS) における特徴量で,射影行列 $V_p \ge V_c$ から求まる.本実験で は,日本語の音素数は 54(N)に, V_p における各音素部分空 間の次元数は 5(K)に固定する.各音素部分空間射影行列は, 音素ごと 100 フレームを用いて作成するが,フレーム数が 100 より少ない音素に対しては,全フレームを用い射影行列を計算 する.

2 4 Original speech: the speech wave form and spectrogram of the Japanese utterance /akusyu/.

☑ 5 Reverberant speech (reverberation time = 0.47 sec): the speech wave form and spectrogram of the Japanese utterance /akusyu/.

図4と図5はクリーン音声と残響音声の波形とパワースペク トルを表している.残響音声のスペクトルとクリーン音声のス ペクトルを比較してみると,残響音声のスペクトルの各フレー ムにおいて,残響時間分の過去のフレームの影響でエネルギー が強くなっていることが分かる.特に,発話後半の部分で,ク リーン音声の低周波数のパワーは弱くなっているが,残響音声 の低周波数のパワーには過去発話の残響成分が残っている.そ のため,クリーンの音声モデルとのズレが生じ認識が難しく なる.

本実験では,4つの比較特徴量の静的特徴量と,動的特徴

量を用いた.さらに,各特徴量には CMS を適用した.ATR の日本語音素バランス単語発話データベース(SET-A)から, 特定話者の2,620単語クリーン発話を用い54個の音素モデル (HMM)を作成する.各音素 HMM はモノフォンモデルであ り,各状態で4混合正規分布,状態数は3にした.評価実験は, モデル学習時と同じ特定話者で学習データと違う500のクリー ン単語と各残響単語を用いて行った.

4.3 実験結果

最初に,特徴量 MFCC, PCA, PV1 を用いて残響時間を 変化させながら単語認識実験を行った.その結果を図6に示す. 横軸が残響時間,縦軸が単語認識率になっている.残響時間が 短い時は,クリーンの時とほぼ変わらず高い認識率が得られた. しかし残響時間が300msより長くなると,全手法において認 識率の低下が起こるが,提案手法の特徴量は従来手法の特徴量 より,高い認識率を示している.

☑ 6 Results of word recognition as a function of reverberant time.

次に,クリーンの評価音声データに対して,特徴量 PV2 の次 元数を 16 から 128 まで調整しながら,単語認識実験を行った. その結果を図 7 に示す.右には比較対象 3 つの特徴量,左には 次元数を調整した PV2 の認識結果を示している.PV2 の次元 数が 20 の時,認識率が 98.8% で一番高い.その時,MFCC, PV1 よりも認識率が高く,PCA と同じ認識率を示している.

 \boxtimes 7 Results of word recognition in clean room.

最後に,残響時間が470 ms と1300 ms の時の単語認識実験 を行った.その結果を図8と図9に示す.残響時間が480 ms の時は28次元,1300 msの時は32次元のPV2が一番高い認 識率(83.2%,75.8%)を示している.また,他の3つの特徴 量に比べて,一番高い認識結果が得られた.

☑ 8 Results of word recognition in 470 ms reverberant room.

2 9 Results of word recognition in 1300 ms reverberant room.

音素 PCA による特徴量 PV2 は残響時間が短い時は従来手法 と同等な認識性能を示していて,残響時間が長い時は従来手法 より認識率の改善が得られた.これらの結果より,提案手法の 有効性が確認できる.

5. ま と め

残響によるひずみ音声に対して,音声認識に有効な音声特徴 量抽出法を提案した、提案手法を用いることで残響時間が長く なるほど,従来手法より顕著な認識率改善が実験の結果より確 認できた.しかし,提案手法には課題がいくつか残されている. 先ず,提案手法の特徴量 PV2 の最適次元数は,残響時間によっ て異なり,残響時間が長くなるほど次元数が大きくなる.次に, 各音素部分空間の次元数の調整問題もある.本論文では音素べ クトルの作成において,各音素部分空間の次元数を同じ次元数 に統一したため, 音素ごとに最適な次元数は考慮していない. 今後は寄与率などを用い, 音素ごとに最適な次元数を調整して いく予定である.また,本論文では54個の音素を用いている がこの音素数も最適とはいいがたい.音素によってはデータ数 が少なく, 音素空間の正しい推定が難しい. さらに次元数も膨 大になっている.クラスタリング手法を用い,似ている音素同 士を統合することにより次元数の削減と各音素部分空間の正し い推定も試みる予定である.最後に,提案手法のステップ2に おいて, PCA を用いて次元削減を行っているが, LDA などの クラス間の識別に有効な手法も検討したい.

献

文

- C. Avendano, S. Tivrewala, and H. Hermansky, "Multiresolution channel normalization for ASR in reverberant environments," Proc. Eurospeech1997, pp. 1107-1110, 1997.
- [2] W. Li, K. itou, K. Takeda and F. Itakura, "Two-Stage Noise Spectra Estimation and Regression Based In-Car

Speech Recognition Using Single Distant Microphone," Proc. ICASSP2005, pp. 533-536, 2005.

- [3] K. Kinoshita, T. Nakatani and M. Miyoshi, "Efficient Blind Dereveration Framework for Automatic Speech Recognition," Proc. Interspeech2005, pp. 3145-3148, 2005.
- [4] R. Vetter, N. Virag, P. Renevey and J.-M. Vesin, "Single Channel Speech Enhancement Using Principal Component Analysis and MDL Subspace Selection," Proc. Eurospeech99, pp. 2411-2414, 1999.
- [5] S-M. Lee, S-H. Fang, J-W. Hung and L-S. Lee, "Improved MFCC Feature Extraction by PCA-Optimized Filter Bank for Speech Recognition," Proc. ASRU2001, pp. 49-52, 2001.
- [6] F. Asano, Y. Motomura, H. Asoh and T. Matsui, "Effect of PCA Filter in Blind Source Separation," Proc. ICA2000, pp. 57-62, 2000.
- [7] H. Hermansky and N. Morgan, "RASTA Processing of Speech," IEEE Trans. on Speech and Audio Processing, Vol. 2, No. 2, pp. 578-589, 1994.
- [8] B. Schölkopf, A. Smola, and K.-R. Müller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Computation, Vol. 10, pp. 1299-1319, 1998.
- [9] Y. Ariki and K. Doi, "Speaker Recognition based on Subspace Method," Proc. ICSLP94, pp. 1859-1862, 1994.
- [10] Y. Ariki, S. Tagashira and M. Nishijima, "Speaker Recognition and Speaker Normalization by Projection to Speaker Subspace," Proc. ICASSP96, Vol. 1, pp. 319-322, 1996.
- [11] 滝口哲也,有木康雄,"Kernel PCA を用いた残響下におけるロ バスト特徴量抽出の検討,"情報処理学会論文誌, Vol.47, No.6, pp. 1767-1773, 2006.
- [12] S. Nakamura, K. Hiyane, F. Asano, T. Nishimura and T. Yamada, "Acoustical Sound Database in Real Environments for Sound Scene Understanding and Hands-Free Speech Recognition," Proc. LREC2000, Vol. 2, pp. 965-968, 2000.
- [13] S. Young et. al., "The HTK Book," Entropic Labs and Cambridge University, 1995-2002.