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Abstract

For a hands-free speech interface, it is important to detect com-
mands in spontaneous utterances. To discriminate commands
from human-human conversations by acoustic features, it is ef-
ficient to consider the head and the tail of an utterance. The dif-
ferent characteristics of system requests and spontaneous utter-
ances appear on these parts of an utterance. Experiment shows
that by separating the head and the tail of an utterance, the ac-
curacy of detection was improved. And also, considering the al-
ternation of speakers using two channel microphones improved
the performance. Although detecting system requests using lin-
guistic features shows high accuracy, combining acoustic and
turn-taking features lift up the performance.
Index Terms: system request detection, utterance verification,
SVM, speech recognition, turn-taking

1. Introduction
Recently, speech interfaces are usually applied to the equipment
which users cannot operate by hands; car navigation, robot.
However, these interfaces have a problem that they cannot dis-
criminate system requests - utterances which users talk to a sys-
tem - from human-human conversations. Therefore, a sppech
interface of a car navigation today requires a physical button
which on and off the microphone input. If there is no button for
a car navigation, all conversations are recognized as commands
for the system. The button spoils the merit of speech interfaces
which users do not need to operate by the hand.

Speech spotter[1] is one of the solution to the problem.
However, speech spotter requires users to change the style of ut-
terance consciously. Concerning this issue, there are researches
on discriminating system requests from human-human conver-
sation by acoustic features calculated from each utterance [4].
And also, there are discrimination techniques using linguistic
features. Keyword or key-phrase spotting based methods[2, 3]
have been proposed. However, using keyword spotting based
method, it is difficult to distinguish system requests from expla-
nations of system usage. It becomes a problem when both ut-
terances contain a same “keywords”. For example, the request
speech is “come here” and the explanation speech is “if you say
come here, the robot will come here”. In addition, it costs to
construct a network grammar to accept flexible expressions.

In this paper, firstly we propose an advanced method of dis-
crimination using only acoustic features. The difference of sys-
tem requests and spontaneous utterances usually appears on the
head and the tail of the utterance. By separating the utterance

section and calculating acoustic features from each section, the
accuracy of discrimination was improved. Secondary, we intro-
duce the consideration of the alternation of speakers. Consider-
ing turn-taking before and after the utterance, the performance
was improved. Finally, we take linguistic features into account.
Though the accuracy of discrimination using linguistic features
is good itself, combining acoustic and turn-taking features lift
up the performance.
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Figure 1: Two person + one system dialog.

2. Recording Conditions and Details of
Corpus

The corpus for evaluation is recorded under the situation where
two people and a system in a same place (Figure.1). Two people
talk each other and sometimes make request to the system. This
situation is quite common. For example, two people is in a car
and operates a car navigation. In this paper, we used a mobile
robot as a system, because recording in a real car causes noise
problems. Our task is to detect system requests from various
spontaneous utterances.

The whole picture of the robot is Figure 2. It consists of two
microphones (those are different from recording microphones),
two omni cameras (upper view and lower view), a laptop com-
puter to control, a gripper to place a bottle, wheels and motors
(advancement, retreat, rotation). The functions of the robot are
shown in Table 1. Generally, we operate the robot by speaking
a command a few meters away from it.

The recording microphones were set up on the breast of
each person. The length of the recording time is 30 minutes.
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Figure 2: Pitcure of mobile robot.

Table 1: Function list of the mobile robot.
Sound source direction

presumption based on CSP
Move toward/backward sound source

Functions Obstacle avoidance
Place a bottle by the gripper

Take a face picture
”Kotchi ni kite.
(Come here.)”
Mukou he itte.

(Go to the other side.)”
Command examples ”Shashin wo totte.

(Take my picture.)”
”Watashi ni tsuite kite.

(Come withe me.)”
Bottle wo oite.

(Place the bottle.)”

We did not show them the list of commands that the robot can
accept. One reason is to increase the variation of system request
commands. The other reason is that we are going to develop a
speech interfaces which accept not only specified commands
but also various expressions. Therefore, they could speak com-
mands that might be acceptable to the robot. We labeled those
utterances as system requests manually. Table 2 shows the re-
sult of cutting out utterances from the record by power and zero-
crossing.

3. Utterance verification in Spontaneous
Speeches

We propose the system requests detecting method based on
SVM. The overview of the system is shown in Figure 3. We de-
scribe acoustic parameters first. It is possible to detect system
requests reasonably with acoustic features, because it does not
need to reconstruct the discriminator when the system requests
are added or changed. Calculated acoustic parameters are 8 di-

Table 2: The numbers of utterances and system requests.

Total utterance System request
330 49

mensions shown in Table 3, but we calculate them from three
sections described in 3.1. Thus, the acoustic features are 24
dimensions. Then, we describe turn-taking parameters. Turn-
taking parameters are 3 dimensions calculated from the three
sections. Considering the speaker’s alternation, the distinction
accuracy was improved. And, it is also effective to use linguis-
tic features which based on term frequencies of each utterance.
It can be said that the linguistic parameters are consists of fre-
quencies of the system request words and garbage words. We
describe linguistic parameters at the end.

3.1. Acoustic Parameters

Even if we speak unconsciously, there are acoustic differences
between utterances to equipments and those to humans under
the condition the subject equipment is machinelike [4]. In this
paper, we focus on the different characteristics of commands
and human-human conversations which usually appear on the
head and the tail of the utterance. For example, Figure 4 is
the wave form of a command utterance, and Figure 5 is that of
a spontaneous utterance. The start point and the end point of
the utterance are indistinct in chatters while there are no sounds
before and after the utterance in commands. There are mainly
two reasons that make the start and the end point unclear. One
reason is there are usually fillers and falters in chatters while
there are short pauses on the head and the tail of utterances in
commands. We usually put a short pause before a command to
clarify and keep quiet until the system responds something. The
other reason is the following person often begins to talk while
the current person does not finish talking yet. In this section,
we deal with the former case. To put the former phenomenon
to practical use, we calculate acoustic parameters not from the
whole utterance section but from each three sections below.

Utterance sections are detected by power and zero-crossing.
But the method can detect only clear utterance sections. To
detect whole utterances in spontaneous speeches, it is easy to
put margins before and after the detected utterance sections.
However, these margins contain some problems written above.
Therefore, we do not join these margins to the detected utter-
ance section, but calculate acoustic parameters (Table 3) also
from each margin separately.

The power is computed by Root Mean Square (RMS). The
pitch is calculated by LPC residual correlation. Table 4 shows
the conditions of pitch estimation.

Table 3: Acoustic Parameters.
Power Ave. S.D. Max. Max. - Min.
Pitch Ave. S.D. Max. Max. - Min.

Table 4: Conditions of pitch estimation.
Sampling rate 16 kHz Window type Hamming
Frame length 25 ms Max. pitch freq. 300 Hz
Frame shift 16 ms Min. pitch freq. 70 Hz
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Figure 3: System overview of utterance verification.
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Figure 4: A sample of system request.
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Figure 5: A sample of spontaneous utterance.

3.2. Turn-taking Parameters

The sounds in the head and tail margins sometimes contains
a speech of the next person, though it is not so loud. There-
fore, we should separate voices of the next person from fillers
and flatters. Considering which person speaks in each utterance
section improves the accuracy of utterance verification. For ex-
ample, the utterance seems to be a chat if speakers changes
like B → A → B in each section. In this paper, we calcu-
late these turn-taking parameters by crosspower-spectrum phase
(CSP) [5]. Under the condition two microphones are set up for
each person, we can tell the speaker from which microphone re-
ceives the utterance first. Considering the time lag CSP shows
the maximum value, we can tell which microphone receives
first. Moreover, CSP considers only the phase of the wave by
normalize the crosspower. This feature fits the condition that the
distance of two microphones changes, where the power ratio of
two microphones changes.

The crosspower-spectrum is computed through the short-
term Fourier transform applied to windowed segments of the
signal si[t] received by the i-th microphone at time t :
CS(n; ω) = Xi(n; ω) X∗

j (n; ω), where * denotes the com-
plex conjugate, n is the frame number, and ω is the spectral fre-
quency. Then the normalized crosspower-spectrum is computed
by the following:

φ(n; ω) =
Xi(n; ω)X∗

j (n; ω)

|Xi(n; ω)||Xj(n; ω)| (1)

This equation preserves only information about phrase dif-
ferences between xi and xj . Finally, the inverse Fourier trans-
form is couputed to obtain the time lag (delay).

C(n; l) = F−1φ(n; ω) (2)

If the sound source does not move (this means it does not
move in an utterance), C(n; l) should consist of a dominant
straight line at the theoretical delay. Therefore, a lag is given as
follows:

C(l̂) = argmax
l

{
NX

n=1

C(n; l)} (3)

In the situation that the microphones are set up for each
person, which microphone receives the utterance first and the
reliability of the lag are the matters. Thus, we calculate D from
each section and make them turn-taking parameters.

D =

(
C(l̂) (0 ≤ l̂ < N−1

2
)

−C(l̂) (N−1
2

≤ l̂ < N − 1)
(4)

3.3. Linguistic Parameters

Linguistic features are term frequencies calculated from the re-
sults of speech recognition. Feature vectors consist of frequen-
cies of the system request words and chatter words. Verifying
utterances by linguistic features works accurately on the situa-
tion where the domain of the task is limited.

To verify utterances by linguistic features, we need to rec-
ognize speech first. In this subsection, we account for the condi-
tions of speech recognition first. Then, we describe the method
to calculate linguistic parameters.

To create a baseline of the acoustic model, we use about
200,000 Japanese sentences (200 hours) spoken by 200 males
recorded in Corpus of Spontaneous Japanese (CSJ) [6]. Table
5 shows the conditions of acoustic analysis and the specifica-
tion of HMM. To improve the speech recognition accuracy, the
acoustic model adaptation by MLLR+MAP [7] was performed
as closed after the construction of a baseline model. The adap-
tation data from our corpus is almost 10 minutes. The language
model is made from the manually recognized data. In order
to build the language model to be open condition for speaker-
A, we use the transcriptions of speaker-B. Feed the corpus into
Julius [8] - large vocabulary continuous speech recognition soft-
ware - under these conditions, the results was obtained with
42.1% word accuracy.
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From the results, linguistic parameters are computed. Term
frequency vectors in each utterance are calculated. Then, the
vectors are employed as linguistic parameters.

Table 5: Conditions Automatic Speech Recognition.
Sampling rate 16 kHz

Feature parameters MFCC (25 dim.)
Acoustic Analysis Frame length 20 ms

Frame shift 10 ms
Window type Hamming

Type 244 Syllables

HMM
Mixture 32 mix

Vowel(V) 5 states 3 loops
Consonant+Vowel(CV) 7 states 5 loops

4. Experiments
Experiments were performed to test the utterance verification
using the proposed parameters. We used SV M light [9] for sup-
port vector machine with RBF (Gaussian) kernel. When more
than two kinds of parameters are used at the same time, we com-
bined parameters as follows:

U = [αP1 βP2], (5)

where U is combined vector and the original feature vectors are
P1, P2. α and β were given experimentally.

Table 6 shows the results of utterance verification evaluated
by leave-one-out cross-validation. In this experiment, we set
0.7 seconds for both margins before and after the clear utter-
ance sections. The results are the cases F-measure became the
maximum values. The F-measure became 0.86 where acoustic
parameters (24 dim.) are calculated from proposed three utter-
ance sections, while that was 0.66 where the feature values (8
dim.) are calculated from a whole utterance. Then, adding turn-
taking features, it turned out to be 0.89.

Using only linguistic features, the result was 0.94. Because
the domain of the commands the robot can accept is not so big,
verifying utterances by linguistic parameters shows good result.
Then, adding acoustic parameters, the f-measure became 0.95.
And also considering turn-taking features, it reaches 0.96.

Table 6: Result of Utterance verification.
Precision Recall F-measure

Acoustic (8 dim.) 0.71 0.61 0.66
Acoustic (24 dim.) 0.80 0.92 0.86
Acoustic (24 dim.)

+ Turn-taking 0.87 0.92 0.89

Linguistic 0.94 0.94 0.94
Linguistic

+ Acoustic (24 dim.) 0.94 0.96 0.95
Linguistic

+ Acoustic (24 dim.)
+ Turn-taking 0.98 0.94 0.96

5. Conclusions
To discriminate commands from human-human conversations
by acoustic features, it is efficient to consider the head and tail
of an utterance. The different characteristics of system requests

and spontaneous utterances appear on these parts of an utter-
ance. Separating the head and the tail of an utterance, the ac-
curacy of discrimination was improved. Considering the alter-
nation of speakers using two channel microphones progresses
the performance also. It shows fairly high accuracy of detecting
system requests using linguistic features, but combining acous-
tic and turn-taking features increase the accuracy even more.

Future work includes evaluation under the situation where
the system accept many kinds of commands and enlarge the
amount of corpus. The improvement of detecting utterance sec-
tions and the consideration of new kinds of features are also the
assignments.
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