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ABSTRACT

This paper describes a hands-free speech recognition
technique based on acoustic model adaptation to re-
verberant speech. In hands-free speech recognition,
the recognition accuracy is degraded by reverberation,
since each segment of speech is affected by the reflec-
tion energy of the preceding segment. To compensate
for the reflection signal we introduce a frame-by-frame
adaptation method adding the reflection signal to the
means of the acoustic model. The reflection signal is
approximated by a first-order linear prediction from the
preceding frame, and the linear prediction coefficient is
estimated with a maximum likelihood method by using
the EM algorithm, which maximizes the likelihood of
the adaptation data. Its effectiveness is confirmed by
word recognition experiments on reverberant speech.

1. INTRODUCTION

In hands-free speech recognition, one of the key issues
for practical use is the development of technologies that
allow accurate recognition of reverberant speech. Cur-
rent speech recognition systems are capable of achiev-
ing impressive performance in clean acoustic environ-
ments. However, if the user speaks at a distance from
the microphone, the recognition accuracy is seriously
degraded by the influence of reverberation.
Convolution distortion is usually caused by a tele-
phone channel, microphone characteristics, reverbera-
tion, and so on. Its effect on the input speech appears
as a convolution in the wave domain and is represented
as a multiplication in the linear-spectral domain. Con-
ventional normalization techniques, such as CMS (Cep-
stral Mean Subtraction) and RASTA, have been pro-
posed and their effectiveness has been confirmed for
a telephone channel or microphone [1][2][3] that has
short impulse responses. When the length of the im-
pulse response is shorter than the analysis window used
for the spectral analysis of speech, those methods are

effective. However, as the length of the impulse re-
sponse for the room reverberation becomes longer than
the analysis window, the performance degrades. This
is because each segment of speech is affected by the
reflection energy of the preceding segment in reverber-
ant environments. To reduce the effect of the rever-
beration, microphone array techniques were proposed
[4][5][6][7]. Array processing can offer the additional
advantage of spatial processing, but microphone arrays
may not be suitable in some cases because of their size
and cost. Thus approach without microphone arrays
are also proposed, e.g. [8][9].

This paper describes a model adaptation technique
for reverberant speech recognition. The new technique
is based on HMM composition [10] using a first-order
linear prediction. In this paper, we approximate the
reflection signal of the reverberant speech by the lin-
ear prediction from the preceding frame. Adding the
reflection signal to the means of the acoustic model,
a frame-by-frame adaptation is implemented for rever-
berant speech. Furthermore, this paper also describes
a technique to estimate the linear prediction coefficient.
This method estimates the parameters of the reverbera-
tion to maximize the likelihood of the adaptation data.

2. HMM ADAPTATION TO
REVERBERANT SPEECH

In this paper, we consider the reflection signal of the
reverberant speech as additive noise and approximate
it by a linear prediction from the preceding frame. The
observed signal is therefore represented by

O(w;t) = S(w;t) - Hw) + a(w) - O(w;t — 1) (1)

where O(w;t) and S(w;t) are the linear spectrum for
the observed signal and the clean speech of the fre-
quency w at the t-th frame, H(w) is the spectral dis-
tortion within each frame, and «(w) is the linear pre-
diction coeflicient for the frequency w.
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Figure 1: Frame-by-frame adaptation using a first-
order linear prediction

Using Equation (1), the composite HMM for rever-
berant speech is computed. The procedure is as follows
(Figure 1).

1) Compose HMMs of the clean speech and spec-
tral distortion within each frame in the cepstral

domain.
WS — S+, TS — 2+ 5 @)

Here the subscript cep represents the cepstral do-
main, (¢, X(9) is the means and variances of
the clean speech HMM, and (H) means the spec-
tral distortion within each frame.

2) Transform (uéﬁf ), Ec(ng)) from the cepstral do-

main to the linear-spectral domain.

3) Frame-by-frame adaptation to the reverberant speech

using the preceding frame.

3.1) Add the reflection signal estimated by the
linear prediction from the preceding frame
to the means of the acoustic model.

(O SH

i = pi o Ou(t=1)  (3)
Here the subscript lin represents the linear-
spectral domain.

3.2) Transform (/ll(i? , ﬁ'l(ig)

domain to the cepstral domain.

Given the composite HMM for the reverberant speech,
a speech recognition system estimates the word string
associated with the test waveform.

This section has only described how to adapt the
acoustic model to reverberant speech. Therefore esti-
mation of the reverberant parameters remains a serious
problem. The next section describes how to estimate
the linear prediction coefficient and the spectral distor-
tion within each frame.

) from the linear-spectral

3. ESTIMATION OF REVERBERANT
PARAMETERS

Estimations of the spectral distortion within each frame
and the linear prediction coefficient are performed by
maximizing the likelihood of the adaptation data. First
the spectral distortion is estimated using HMM separa-
tion [10] in the cepstral domain, where « is set to zero.
Then the linear prediction coefficient is estimated in
the linear-spectral domain. The steps to estimate the
reverberant parameters are as follows (Figure 2):

1) Estimate the spectral distortion using the HMM
separation [10] in the cepstral domain.

A = argmax Pr(O|Ag, As) (4)
Am

Here A denotes the set of HMM parameters.

2) Compose the HMMs of the clean speech, Ag, and
the spectral distortion, Ay, in the cepstral do-
main according to Equation (2).

3) Transform (ﬂgesf), Ac(eé;,H )) from the cepstral do-

main to the linear-spectral domain.

4) Estimate the linear prediction coefficient.

& = argmaxPr(O)a, Ay, \s)

= argmaxPr(Ola, Asy) (5)

The estimation of the linear prediction coefficient is
performed in a maximum likelihood fashion by using
the Expectation-Maximization (EM) algorithm. The
EM algorithm is a two-step iterative procedure. In
the first step, called the expectation step, the following
auxiliary function is computed.

Q(dla) = Bllog Pr(Ola, Asmy, )|, As iy, | (6)
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Figure 2: Estimation of reverberant parameters using
EM algorithm
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Here u( ) and E (s ) are the mean and variance cor-
respondlng to a phoneme p, state j, and mixture k
in the model )\SHM, O, is the observation sequence
(adaptation data) for a phoneme p, and D is the di-
mension of the adaptation vector O,(t). In this work,
we assume that the alignment for the adaptation data
in the linear-spectral domain is the same as that in the
cepstral domain. Therefore the probability, v, of being
in state 7 and mixture k£ at time ¢ is computed in the
cepstral domain.

The maximization step (M-step) in the EM algo-
rithm becomes “max Q;(&|a)”. The re-estimation for-
mula can be therefore derived from knowing that 0Q(&|

a)/0& = 0 as
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4. EXPERIMENTS

4.1. Experimental Conditions

The new adaptation technique was evaluated on distant-
talking speech recognition tasks. Reverberant speech
was simulated by a linear convolution of clean speech
and impulse responses. The impulse responses were
taken from the RWCP sound scene database [11]. The
length of the impulse response was 300 msec. The dis-
tance to the microphone was 2 m. The speech signal
was sampled at 12 kHz and windowed with a 32-msec
Hamming window every 8 msec. Then FFT is used
to compute 16-order MFCCs (mel-frequency cepstral
coefficients) and the power. In recognition, the power
term is not used, because it is only necessary to adjust
the power of the clean speech model in Equation (3).
The models of 55 context-independent phonemes
were trained by using 2,620 words in the ATR Japanese
speech database for the speaker-dependent HMM. Each
HMM has three states and three self-loops, and each
state has four Gaussian mixture components. Also, a
single Gaussian is employed to model the spectral dis-
tortion within each frame. The tests were carried out

Table 1: Word-recognition rates for reverberant speech

method CMS model adap. |matched
spectral distortion
compensation O O O O
additive reﬂe.ctlon « « O O
compensation

| recognition rate [[ 86.0% | 91.2% | 94.0% | 96.4% |

on 500-word recognition tasks, and one male spoke the
500 words. The test speaker uttered 10 words as adap-
tation data, different from those used in the training
and testing.

4.2. Experimental Results

Table 1 shows the recognition rates for reverberant
speech. In the CMS-based testing case, the phoneme
HMDMs are trained by using the CMS-processed clean-
speech data. Subtraction of each cepstral mean value
from each set of test data gives a recognition rate of
86.0%. The result clearly shows that the simple CMS
technique does not work well. As can be seen from this
table, the use of the model adaptation achieves good
performance, comparable with that of CMS in the re-
verberant environment. The use of the model adapta-
tion without the additive reflection compensation us-
ing only Equation (2) improved the recognition rate to
91.2%, and a further improvement was also obtained by
the adaptation with additive reflection compensation
using Equation (3). However comparing the result of
the model adaptation with that of the matched model
which was trained by using reverberant speech (2,620
words) shows a slight degradation in performance.

Figure 3 shows the convergence properties of the
model adaptation. In this figure, the log-likelihood
versus the number of iterations in the EM algorithm
is plotted. As can be seen from Figure 3, the EM algo-
rithm converges within several iterations.

Figure 4 shows a comparison of the performance of
the model adaptation and the inverse filtering. The
inverse filtering requires the measurement of the im-
pulse response from the position of the sound source
to the microphone, and its inverse is used to derever-
berate the speech signal according to Fo(t)]/F[w(t)],
where w(t) is the measured impulse response and F[x]
is the Fourier transform. The performance of both ap-
proach with no mismatch between the adaptation and
testing positions is very good. Here the term “adap-
tation position” is the position where the test speaker
uttered 10 words as the adaptation data for the model
adaptation approach and the position where we mea-
sured the impulse response for the inverse filtering. As
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Figure 3: Convergence of the EM algorithm
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Figure 4: Comparison of the performance of model
adaptation and inverse filtering

the mismatch of the positions becomes large, the per-
formance of the inverse filtering is decreased. For the
model adaptation the performance is not decreased.

5. SUMMARY

This paper has described an acoustic model adaptation
technique for reverberant speech recognition. In this
paper, we assume that the influence of the reverbera-
tion contributes as the spectral distortion within each
frame and as additive noise, which is approximated
by a first-order linear prediction from the preceding
frame. The linear prediction coefficient is estimated us-
ing the EM algorithm from a small amount of a user’s
speech. Adding the reflection signal to the means of
the acoustic model, a frame-by-frame adaptation is im-
plemented for reverberant speech. The new adapta-
tion technique was evaluated on distant-talking speech
recognition tasks. The experimental results show that

the use of the model adaptation achieves good perfor-
mance in comparison to that of CMS, and the model
adaptation is robust to the mismatch between the adap-
tation and testing positions in comparison with the in-
verse filtering approach.
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