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ABSTRACT

For hands-free speech recognition, it is desirable to
acquire a speech signal of the highest quality possible,
and to reduce the mismatch between the test utterance
and the acoustic model. In this paper, we present a
stochastic approach to integrate acoustic model adap-
tation and signal enhancement using a microphone ar-
ray. With this method, it is possible to find speaker
directions even at low SNRs. The enhanced speech is
recognized by using composite HMMs which are able
to represent the statistics of the overlapping speech.
When the SNR of the target speaker’s speech relative to
the interfering speech was 0 dB, the composite-speech
HMDMs improved the recognition rate to 80.4%. Inte-
grating composite HMMs and a microphone array fur-
ther improved it to 94.2% - a very respectable improve-
ment over the original 23.0% recognition rate for clean
HMNMs using a single microphone.

1. INTRODUCTION

Although large-vocabulary speech recognition systems
perform remarkably well, recognition accuracy is de-
graded by the presence of interfering voices. A robust
speech recognition method using composite HMMs has
been proposed for countering additive noise in [1, 2],
and some reports have already shown that the compos-
ite noisy HMMs represent the statistics of noisy speech
well. We have applied the HMM composition method
to overlapping speech recognition in [3]. The experi-
mental results have shown that the composite HMM
combining the target speech HMM and an interfering
speech HMM can improve overlapping speech recogni-
tion.

In this paper, we attempt to strengthen the HMM
composition method by using a microphone array. There
have been several other microphone-array-based ap-
proaches for dealing with overlapping speech recogni-
tion (e.g. [4]). Although those microphone-array-based
approaches enhance speech intelligibility, they do not
deal with the mismatch between the beamformed data

and the acoustic model. Conventional approaches for
estimating the speaker direction focus on the short-
term or long-term power of the speech signal. For over-
lapping speech recognition, the SNR of the speech may
be approximately 0 dB. In such cases, it is difficult to
find the speaker direction with those approaches. In
this paper, we estimate the speaker direction from test
data with GMMs (Gaussian Mixture Models) based on
a maximum-likelihood criterion. With this method, it
is possible to find speaker directions even at low SNRs.
Then the next stage of processing uses HMM composi-
tion to reduce the mismatch between the beamformed
data and the acoustic model.

First, we describe a method for estimating the speaker
direction with an acoustic model. Following this, we
describe a robust speech recognition method based on
HMM composition for overlapping speech.

2. ESTIMATION OF THE SPEAKER
DIRECTION

In the stochastic approach, the estimated word sequence
W is given by

A
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where Y, is the test data which is processed with a
delay-and-sum beamformer (e.g. [5]), and 8 is the esti-
mated speaker direction. The estimation of the speaker
direction is handled in a maximum-likelihood frame-
work
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where we find a GMM having the maximum likelihood
for every frame. Now let S1, S2, ---, be sound sources
in the target environment. The set of GMMs, M, is
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Figure 1: A robust speech recognition system using
HMM composition and a microphone array

given by
M = G NGMM Ly (3)

In equation (2), when the maximum likelihood for a
frame is not calculated from the target GMM, the frame
is rejected. When the percentage of rejected frames of
the total frames is more than 70%, the estimated direc-
tion is rejected, and we use the last estimated direction.

Figure 1 shows a block diagram of the robust speech
recognizer. Feature vectors are obtained by steering a
beam to each direction, and the likelihood score for
each direction is calculated with GMMs. Then, the di-
rection having maximum likelihood is selected, and the
beamformed signal is recognized by using composite
HMMs.

3. HMM COMPOSITION FOR
OVERLAPPING SPEECH

If the target signal s1(¢) and the interfering signals
s2(t), - -- are independent, the observed signal o(¢) is
represented by

o(t) = s1(t) + s2(t) + - - -. (4)

To apply the HMM composition method to overlapping
speech, the HMM parameters have to be transformed
from the cepstral domain to the linear-spectral domain.

Cos™ '{Log{ Exp(Cos(As1..,)) ®
k-Exp(Cos(As2..,)) @&+ }.  (5)

Xo.., =

cep

Here X\ denotes the set of HMM parameters, while the
suffix cep represents the cepstral domain. The composi-
tion of HMMs is defined by the operator . The terms
Cos, Log, and Exp are the cosine transform, logarithm
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Figure 2: Composite HMM of the target speaker HMM
and the interfering source GMMs.

transform, and exponential transform of the Gaussian
probability density function, respectively. The SNR
adjustment factor, k, is introduced to compensate for
the mismatch of the signal level.

The overlapping phoneme HMM was made by using
every possible combination of a target phoneme HMM
and all possible interfering phoneme HMMs in [3], since
the interfering speech is generally unknown. In new
approach used this paper, to simplify the structure the
overlapping phoneme HMM is given by the composi-
tion of the target phoneme HMM and the GMMs of
the interfering sources. Figure 2 shows the structure
of the composite HMM. The state j of the compos-
ite phoneme HMM has a set of observation probability
density functions (PDFs):

GMM
Bj = {bs1j,bs1; &b} (6)
Here bg1,; is the PDF of the target speaker S1, and
bs1,; @ bggMM) is the composite PDF of bs;,; and the

GMM of the interfering source S2. In each state, the
PDF having the maximum likelihood is selected for ev-
ery frame, and the likelihood is added to the total score.

The start and end points of the target speech are
normally different from those of the interfering speech.
We deal with the difference by adding a backward tran-
sition from the end state to the first state in the pause
(silence) model.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Conditions

Word-recognition experiments were carried out on over-
lapping speech uttered by two males. Speaker depen-
dent (SD) HMMs for the target speaker are trained by



Table 1: Word recognition rate [%] with a single microphone.

Clean | Comp. HMM | Comp. HMM | Comp. HMM | Comp. HMM | Comp. HMM Max.
SNR HMM (0 dB) (5 dB) (10 dB) (15 dB) (20 dB) likelihood
0 dB 23.0 87.0 87.4 85.2 84.4 80.4 87.8
5dB 374 89.0 91.0 91.8 92.4 92.0 92.0
15 dB 63.4 93.6 93.6 93.6 94.4 94.4 93.6

using 2620 words. The SD HMMs consist of 54 context-
independent phonemes. Each HMM has three states
and three self-loops, and each state has four Gaussian
mixture components with diagonal covariance matri-
ces. The interfering GMM is also trained by using 2620
words. The number of Gaussian mixture components
is 256. For testing, we choose 500 words which are all
different from the words used in training. The tests
were carried out on 500-word recognition tasks. In the
case of a single speaker, the recognition rate with the
SD HMMs is 97.4%.

Microphone-array data is simulated considering only
the time delay. Six microphones are uniformly spaced
at 5 cm intervals, and the speech signal is sampled at
12 kHz. The target speaker and the interfering speaker
are located at 45° and 135°, respectively.

4.2. Evaluation of HMM composition

The result for a single microphone is shown in table
1, where six sets of HMMs are used for evaluation.
One set, the “Clean HMM,” is the target SD model.
The other sets are the composite HMMs. The “Comp.
HMM (5 dB)” means the SNR is adjusted to 5 dB in
equation (5).

At an SNR of 0 dB, the recognition rate with the
clean HMMs is 23.0%. Using the composite HMMs (5
dB) increased the performance to 87.4%. This result is
slightly better than that with “Comp. HMM (0 dB)”.
This is because the adjustment coefficient £ in each
test was different from that in HMM composition. The
adjustment coefficient in the HMM composition is cal-
culated by using all samples of training data.

Next, we employ the maximum-likelihood criterion
to select the composite HMMs. After the calculation of
the likelihood scores for each set of composite HMMs,
the set of composite HMMs having the maximum like-
lihood score is selected. The recognition rate is shown
in “Max. likelihood” of table 1. At the SNRs of 0 dB, 5
dB, and 15 dB, the recognition rates are 87.8%, 92.0%,
and 93.6%, respectively. Comparing this result with
the best one from each set of composite HMMs, the
performance difference is relatively small. Therefore
the maximum-likelihood criterion is effective in select-
ing composite HMMs.
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Figure 3: Directional accuracy for the target speaker.
This figure compares the GMM-based method with the
long-term-power-based method.

Table 2: Percentages of rejected words. In this table,
[¥] shows the result for the interfering speaker.

Percentage of Directional

SNR rejected words accuracy
0dB 8.4% [20.0 97.6% [90.5

5 dB [-5] 3.0% [29.6 99.6% [83.8
15 dB [-15] 0.8% [50.2 100% [79.5]

4.3. Evaluation of HMM composition and a mi-
crophone array

In this section, the test data is processed with a delay-
and-sum beamformer. First, according to equation (2),
the direction of the target speaker is estimated. Fig-
ure 3 shows the directional accuracy within a tolerance
of 10°. With the GMM-based method, the directional
accuracy is 97.6% at an SNR of 0 dB, 99.6% at an
SNR of 5 dB, and 100% at an SNR of 15 dB. In com-
parison with the long-term-power-based method which
finds the direction that maximizes the output power
of the beamformer, there is not much difference in the
performance, except for the SNR of 0 dB. With the
power-based method, it is impossible to find the direc-
tion of the target speaker at low SNRs.

In equation (2), when the maximum likelihood for
a frame is not calculated from the target GMM, the
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Figure 5: Word recognition rate for overlapping speech
which is obtained by steering the beam to the estimated
direction of the target speaker.

frame is rejected. When the percentage of rejected
frames of the total frames is more than 70%, the esti-
mated direction is rejected. Table 2 shows the percent-
ages of the rejected words and the directional accuracy.
It is seen from this table that the number of rejected
words is increased when the SNR is low. At an SNR of
15 dB for the target speaker, the directional accuracy
is 100.0%, and 0.8% of the test data is rejected. On the
other hand, at an SNR of —15 dB for the interfering
speaker, the directional accuracy is 79.5%, and 50.2%
of the test data is rejected. When the SNR is very low,
it is difficult to find the speaker direction using only
the GMM-based method.

After the direction of the target speaker is esti-
mated, the beamformed signal is recognized by using
composite HMMs. Although the beamformed signal
improves the SNR for the target speaker, the signal
of the interfering speaker is distorted due to the fre-
quency dependency of the directive patterns. In figure
4, we plot the average log-likelihood of the interfering
speech versus the steering direction. The likelihood is
calculated with the GMM of the interfering speaker.
The interfering speaker is located at 135°. This figure
shows that the likelihood is decreasing as the steering

Table 3: Word recognition rate [%] with a microphone

array. [*] shows the result with a single microphone.
[ SNR [ Clean HMM | Comp. HMM (20 dB) |

0dB 51.4% [23.0 94.2% [80.4
5dB 61.8% [37.4 96.0% [92.0
15 dB 73.6% [63.4 96.4% [94.4

direction is farther from the direction of the interfer-
ing speaker. To compensate for this, the beamformed
signal for all possible directions are used for the GMM
training (adapted GMM). Then the adapted GMMs
and the HMMs of the target speaker are combined. Fig-
ure 5 shows the recognition rate for overlapping speech
which is obtained by steering the beam to the esti-
mated direction of the target speaker. By selecting the
composite HMMs (for the direction of the interfering
speaker) having the maximum-likelihood in figure 5,
the recognition rate is improved from 51.4% (with the
clean HMMSs) to 94.2% at the SNR of 0 dB. In compar-
ison with the performance of HMM composition shown
in table 1, integrating composite HMMSs and the micro-
phone array improved it from 80.4% to 94.2% at the
SNR of 0 dB, from 92.0% to 96.0% at the SNR of 5 dB,
and from 94.4% to 96.4% at the SNR of 15 dB. These
results are summarized in table 3.

5. CONCLUSION

This paper has presented a stochastic approach to in-
tegrate the acoustic model adaptation and signal en-
hancement with a microphone array. The experimen-
tal results show that it is possible to find the speaker
direction even at low SNRs, and then the recognition
rate for overlapping speech can be improved by using
HMM composition and a microphone array.
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