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ABSTRACT

This paper describes a robust speech recognition method based on HMM (Hidden
Markov Model) composition for overlapping speech. The HMM composition method
has already been proposed for additive noise, and some reports have shown that the
composite noisy HMMs represent the statistics of noisy speech well. In this paper,
we apply the HMM composition method to overlapping speech recognition. Since

the observed signal is represented as the sum of the target speech and the interfering
speech in the time domain, HMM composition should be effective for this purpose.

Word-recognition experiments were carried out on overiapping speech uttered by two
males. At a signal-to-noise-ratio (SNR) of 0 dB, the recognition rate with clean-speech

HMMs was 28.0%. Using the composite speech HMMs increased the performance

to 90.0%. At an SNR of 15 dB, the recognition rate improved ftom 67.5Yo to 95.0%.
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INTRODUCTION

Although large-vocabulary speech recognition systems perform remarkably well, recognition ac-

curacy is degraded by the presence of interfering speech. There have been various approaches to
deaiing with the problem of simultaneous speech from multiple speakers. These approaches are clas-
sified as speech-segregation-based systems (e.S. [1, 2, 3]) and microphone-array-based systems (e.g.

[4,5]). Most of them are still unable to resolve the problems of spectral distortion, reverberation
and so on.

A robust speech recognition method using HMM composition to counter additive noise has been
proposed [6, 7], and some reports have already shown that the composite noisy HMMs represent
the statistics of noisy speech well (e.g. [8, 9]). In [10, 11], the use of HMM composition was
proposed for countering both additive noise and reverberation. However, none of the above reports
have discussed interfering speech. Robust speech recognition in the presence of interfering speech
remains a serious problem.
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In this paper, we apply the HMM composition method to overlapping speech recognition. Since

the observed signal is represented as the sum of the target speech and the interfering speech in
the time domain, HMM composition should also be effective for this purpose. The next section

describes a robust speech recognition method based on HMM composition for overlapping speech.

Following this, the performance for overlapping speech uttered by two males is shown.

HMM COMPOSITION FOR OVERLAPPING SPEECH

On the assumption that target signal s1(f) and interfering signal s2(t) are independent, the observed

signal o(l) is represented by
o(t): s1(f) +s2(t)'

This relation is preserved in the linear-spectral domain as follows:

O(a;m): Sl(ar; rn) + S2(u;m), (2)

where O(u;m),SL(u;m), and S2(or; m) arc short-term linear spectra in the analysis window rn.

The HMM composition executes the addition in the model domain instead of in the time domain.

The parameters for speech recognition are represented by the cepstrum. To apply the HMM
composition to overlapping speech, the HMM parameters have to be transformed from the cepstral
domain to the linear-spectral domain. Therefore, the overlapping speech HMMs are given by

\o..p: Cos-l[Log{ Exp(Cos(,\5r".o)) @ k' Exp(Cos()sr."o)) }]. (3)

Here, ) denotes the set of HMM parameters, while the suffi.x cep represents the cepstral domain.

The composition of HMMs is defined by the operator O in this paper. The terms Cos, Log, and

Exp are the cosine transform, logarithm transform, and exponential transform of the Gaussian
probability density function, respectively.

The levels of the target and interfering signals are generally different in training and testing.
Therefore, we will have to compensate for the mismatch of the levels. The conventional approach

is to introduce an adjustment factor k in the linear-spectral domain. As shown in equation (3), the
interfering speech HMMs are multiplied by the adjustment factor in this paper.

The overlapping phoneme HMM is made using every possible combination of a target phoneme

HMM and the interfering phoneme HMMs, since the interfering speech is generally unknown.
Figure 1 shows the overlapping phoneme HMM composed of the target phoneme HMM lol and

Fig.1 Example of overlapping speech HMM, where each phoneme HMM for target and interfering
speech has three states. The above simplified structure of the overlapping speech HMM is used in
this paper.

Composite phoneme HMM /o/

oleil

Target phoneme HMM /o/

Interfering phoneme HMMs
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interfering phoneme HMMs, where each phoneme HMM for target and interfering speech has three

states. The structure of the overlapping speech HMM is given by the Cartesian product of the

compooent HMMs. In this paper, to simplify the structure, the following equation is defined:

(number of states for an overlapping phoneme)

I (nurrrbe, of states for a target phoneme) x (total number of interfering phonemes)'

The start and end points of the target speech are different from those of the interfering speech. We

deal with the difference by adding a backward transition from the end state to the first state in the

pause (silence) model.' 
The HMM recognizer decodes overlapping speech on a trellis diagram according to maximizing

the log-likelihood. The decoded path will find an optimal combination of target and interfering

speech.

EXPERIMENTS AND RESULTS

Experimental Conditions Word-recognition experiments were carried out on overlapping speech

uttered by two males. Speaker-dependent (SD) HMMs for the target speaker are trained by using

2620 words. The SD HMMs consist of 54 context-independent phonemes. The interfering HMMs

are also trained by using 2620 words. Each HMM has three states and three self-loops, and each

state has four Gaussian mixture components with diagonal covariance matrices. For testing, we

choose 200 words which are different from the words used in training. The tests were carried out

on 200-word recognition tasks. In the case of a single speaker, the recognition rate with the SD

HMMs is 97.0%.
The speech signal is sampled at 12 kHz and windowed with a 32-msec Hamming window

every B msec. Then FFT is used to calculate the 16th-order MFCCs (mel-frequency cepstral

coefiicients) and the power. In this paper, we use only the 16th-order MFCCs without their first

order differentials. The power term is only used to adjust ihe SNR in HMM composition.

Experimental Results Recognition experiments were conducted to evaluate the performance

of ftUU composition at various SNRs. Table 1 shows the recognition rates for the target speaker

at SNRs of 0 dB, 5 dB, and 15 dB, where four sets of HMMs are used. One set, "Clean HMM,"

is the clean HMMs for the target speaker. The other sets are the composite HMMs of the target

HMMs and. the interfering HMMs. At an SNR of 0 dB, the recognition rate with the clean HMMs

is 28.0%. Using the composite HMMs increased the performance to 90.0%. At an SNR of 15

dB, the recogniiion rate improved from 67.5% to 95.0%. At an SNR of 5 dB, the recognition

rate with,,composite HMM jtS an;' is slightly better than that with "composite HMM (5 dB)".

This is because the adjustment coefficient k for each word is different from that used in the HMM

composition. The adjustment coeffrcient in the HMM composition is calculated by using all the

,u-p1", of training data. Otr the other hand, the adjustment coefficients for testing are calculated

for each word. When the same adjustment coefficient is used in HMM composition and for each

word., the recognition rate is g0.5% at an SNR of 0 dB, 94.0% at an SNR of 5 dB, and 95.5% at

Table l Word rates at various SNRs10n

SNR
Clean HMM Composite HMM

(o dB)
Composite HMM

(5 dB)
Composite HMM

(15 dB)

0dB 280°/0 90.0% 895% 89.5%

5dB 49.0% 90.5°/0 92.5% 93.5%

15 dB 67.5°/0 91.0% 92.5% 950%
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an SNR of 15 dB. This performance is sliglrtly better than that shown in table 1. However, it is
difficult to exactly adjust the power term, especially when the SNR is low. The other approaches
may be necessary in real environments.

Next' we select the composite HMMs having the maximum likelihood. The recognition rate
is improved to 93.0% at an SNR of 0 dB, 94.0% at an SNR of 5 dB, and 93.0% at an SNR of 15
dB. This performance is better than that shown in table 1, except for an SNR of 15 dB. There are
several possible sources for the performance degradation. One might be the phoneme-connection
to the interfering speech, where every combination of phonemes is included. Further improvements
would be necessary for practical use.

CONCLUSION

This paper investigated the performance of HMM composition for recognition of overlapping speech
uttered by two males. The experimental results show that the composite HMM of the target
speech HMM and the interfering speech HMM can improve the performance of speech recognition
in the presence of interfering speech. In future work, we will investigate the performance of HMM
composition and separation [12, 13] for overlapping speech in noisy and reverberant environments.
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