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ABSTRACT 

This paper presents a new method to estimate HMM 
parameters of an acoustical transfer function based on 
HMM decomposition in model domain. The model pa­
rameters are estimated by maximizing a likelihood of 
adaptation data. The proposed method is obtained as 
the natural result of a reverse process of the HMM com­
position. 1n our previous paper[1]， we proposed a method 
which c回 model an observed signal by the composi­
tion of HMMs of clean sp田ch， noise 回d an acousti・
cal transfer function. The previously proposed method 
needs measurement of impulse responses. It is inconve­
nient and unrealistic to me出ure impulse responses for 
a new environm回t. The new method is able to esti­
mate HMM pむa.meters of the acoustical transfer function 
from a small amount of adaptation data. Its effective­
ness is confirmed by a series of speaker dependent and 
independent word recognition experiments on simulated 
distant-talking speech. 

1. INTRODUCTION 

1n hands-free speech recognition， a speaker inputs his/her 
speech from a distance. Therefore the recognition accu­
racy seriously degrades due to influences of reverberation 
and environment noise. Many methods have been pro­
posed to cope with the problems caused by additive noise 
and convolutional distortion. Among them， speech en­
hancement and model compensation approaches are two 
exむnples. For the speech enhancement approach， spectral 
subtraction for additive noise and cepstral mean normal­
ization for convolutional distortion have been proposed 
(e. g.， [2， 3， 4]). For the model compensation approach， 
conventional mu1ti-template technique， model adaptation 
(e.g.， [9， 10]) as well as model (de-)composition methods 
(e.g.， [1， 5， 6， 7， 8， 11， 12]) have been developed. 

Ìn our previous paper [lJ， we apply the HMM composi・
tion to recognition of the signal which is contむninated by 
not only additive noise but also reverberation. If the sig­
nal sources are independent each other and additive， the 
HMM composition method can be adopted. The noise 
and the speech signal are assumed to be independent and 
additive in the time domain. While the acoustical tr日s­
fer function and the speech signal are convolutional in 
the time domain， they are assumed to be independent 
and additive in the cepstral domain. Therefore the HMM 
composition is applied twice in the cepstral domain and 
the linear spectral domain. We show effectiveness of the 
previously proposed method [11 through the recogn比lon
experiments for noisy reverberant speech. However， how 
to estimate HMM parameters of the acoustical transfer 
function is a remaining serious problem. The mean vec・

tors of the acoustical transfer function HMM むe derived 
from measured impulse responses. It is inconvenient and 
unrealistic to measure impulse responses for a new envi­
ronment. 

This paper presents a new method to estimate HMM 
parameters of the acoustical transfer function based on 
the HMM decomposition in model domain. The estima­
tion is implemented by maximizing a likelihood of adap­
tation data from any user's position. 1n [9] ， an estimation 
method in ML is presented， where the estimation of the 
acoustical transfer function is implemented in the time 
domain. On the other hand， we estimate the acoustical 
transfer function in model domain. Therefore the estima­
tion in model domain can reduce computation amount. 

2. MODEL ADAPTATION BY HMM 
DECOMPOSITION 

Model parameters are estimated in a maximum like­
lihood(ML) manner using the expectation: maximiza­
tion(EM) algorithm， where the likelihood of the observed 
signal is maximized. The proposed method is based on 
the HMM decomposition method. Therefore the estima­
tion of the acoustical transfer function is implemented in 
model domain. 

The observed signal in the noisy reverberant environ­
ment is represented by 

Oc叩(仇t; m) = :F-1刊!μlog{ exp(:F(Sc<叩pバ(t;γm 

+Hc叩(仇t; m))) + N(いω;17吋}日lト (い1)

Here :F， :F-1 are Fourier( cosine) transform and in­
verse Fourier( cosine) transform respectively. Oc叩(t;m)，
Sc<p(t; m) and Hc<p(t; m) are cepstra for an observed 
signal， a clean speech signal and an acoustical transfer 
function of quefrency t in m-th frame respectively; and 
N(ω; m) is linear spectra for a noise signal of frequency ω 
in m-th frame. Accordingly， the acoustical transfer func­
tion is represented by 

Hc叩(t;m) = :F- 1 [10g{ exp(:F(Oc叩( t ; m))) 

-N(ω; m)}J - Sc<p(t; m). 

The estimation equation of the acoustical transfer func­
tion HMM is rewritten by 

MHc<p = :F-1[log{ exp(:F(Mor.r.p)) 

eMN，川}I e Ms<<p' 
where M represents the associated HMMs; the su伍xes
of cep and liπrepresent the cepstral domain and the lin­
ear spectral domain respectively. The estimation of the 
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(. Estimate pararnet巴r of a noise HMM using a signal during noise periods) 

Figure 1. Parameter estimation by HMM decomposition 

acoustical transfer function is implemented by maximiz­
ing the likelihood of the observed signal， 

MHccp = argmaxP(OIMHccp，Msccp，MNccp)' MHcep 
The decomposition of HMMs is represented by e oper­

ator. For example C = A e B me回s decomposition of C 
from A on condition that convolution of C and B equal 
to A. If the distributions of A and B are Gaussian， say， 
N(μA，σ�) and N(μB，σ主) respectively， the distribution 
of C is N(μA一μB，σ1-σち). 

The proposed method is shown in the followings. Here 
l is number of iteration. 

1. Re-estimate pむam悦rs of composed HMMs M立叩
using adaptation data in the noisy reverberant envi­
ronment by ML estimation in the cepstral domain. 

2. Estimate parameters of a noise HMM MNccp from 
the signal during noise periods. 

3.convert MSJep and MNcep to the linear s叩pec侃al d白。­
maJ.n: 

M;Jm=はP(F(MC叩))，
MNlin = exp(.F(MNccp))' 

4.Decompose Mizazn from MSL: 

M払tm=Mbin eMNIm-

5.Convert M;iLin.to the cep町al domain: 

M;zeep=F-1(log(M払IiJ)・

6. Estimate parameters of the acoustical transfer func­
tion， a mean and a variance， (h�り13)・Here， to 
simplify a description of equations， the clean speech 
HMMs Ms日p is represented by tied-mixture HMMs， 
(μk，σn. 

ムht) = 九日) - ht-1 )，

ムh(l�= h(12 _ h(l，-I)‘ σ �・ σ-

η(1) _ むgmax P(OIη(I-l)，Mseep). 
(.:.九日I ，':'h�';) 
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η(1) is computed by maximization of the following 
auxiliary function， 

Q(η(1) 1η(1-1)) 
T K 

= _ I:乞72 {jlog(σいか1)

{o μk _ h�-I)ームバ) )2 l +ふん3)+ 開ーケ (1-1) ， ^ dl) 、 � ， 2(σr + h�';" +ムh�n J 
where Ot is the observed noisy reverberant signal at 
time t in the cepstrum domain. K and T are the 
number of Gaussian distributions and the number of 
total frames of adaptation data respectively. On the 
assumption that the variance is fixed， t:..h�) is derived 
from θQIθt:..h�) = 0， then given by 

ふ _.( 円? ー μ _ h�I-1) 
乞Ik σいむ1)

ムht)= k

ヤム
同

where m11) = 乞 72oddt) . mf) is the mean of 
adaptation data at l-th iteration by EM algorithm. 
M3 is derived from θQIθムJ12=o， then given by 

ふ ん(1) σいや1)+ムペlj -d) -n
ケ I k (σ;+hFl}+ムが)2 _ v 

φ �I) =V�I) + mfll + ( μ k + h�I))( μ k + h�) 一 2mペイ;r?Iり}
U4d;YI)~=乞7Ji(ot-miV/7iI)，

where V�I) is the variance of adap凶ion data at l­
th iteration by EM algorithm. Here we define the 
function 

)­
I
'

 

rk'H-
HAJ『
勺­

j
)

 

-
1J2
 

一
一川い
σ

1'
2一
'九

J
t一
ム

ム一
+

+一
け

、IJ
E!-今.
1
アuv
e

-2一'h
Jrσ一
+

司
-勺-
LK

4一
σ

偽，.，UR
E
，z，、

σ一-一)
 
、i'
今必

μ、
σ'九ム(

 

FJ

 

ムh:j conv句es to zero by EM algorithm. There­
fore Taylor expansion is able to be applied to the 
above equation. The first order expansion is com­
puted. Thenムり is given by 
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Figure 2. A top view of the experimental room 
reverberant for rates Recognition Figure 3. 

speech. 

Table 1. Recognition rates[%) with 3 adaptation 
words for reverberant speech. 

|
|l HMM-s 1nput 11 | SD I SI 

| Reverberant speech 11 77.8 1 69.4 

Adap-ML 
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-3α)() 7. Compose three distributions according to the equa­
tion (1). [1] 

8. Repeat the above procedure until the log likelih∞d 
probability converges. 
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The procedure is summarized in Figure 1. The mean 
and variance of adaptation data are represented by 
N(μi勺11)) at l-th iteration by EM algorithm. The dis­
tribution is converted to the linear spectral domain. The 
decomposition of the distribution and noise is applied in 
the spectral domain. The obtained distribution is con­
verted to the cepstral domain. Then the acoustical 仕組s­
fer function is decomposed from the obtained distribution 
in the cepstral domain. 

Recognition experiments are conducted to evaluate effec・
tiveness of the proposed method. Figure 2 shows a top 
view of the experimental room. The sound signal is cap­
tured by using a single directional microphone. We mea­
sured 4 transfer functions corresponding to 4 sound source 
positions by using the method reported in [13J. The length 
of reverberation time is approximately 180 msec for the 
expenn淀川room.

Two speech corpora are used for evaluation. One is the 
A-set of the ATR Japanese speech database. The other 
is the ASJ continuous speech database. The former con­
tains word utterances and the latter contains sentence ut­
terances. The speaker independent(S1) models are trained 
by using utterances from 64 speakers in the ASJ da.tabase. 
The speaker dependent(SD) models are trained by using 
2620 words of one ma.le speaker from the ATR da.taba.se. 
The reverberant speech signal is simula.ted by linear con­
volution of clea.n speech signal and measured impulse re­
sponses from the positions p1，. . . ，p4. The noise signal is 
collected in a computer room and added to the reverber­
ant speech signal a.s the SNR is 15dB. 

54 context independent phone models a.re used. Each 
phoneme HMM is a left-to-right 3・state tied-mixture 
HMM. There are 256 Ga.ussian mixture components with 
diagonal covariance matrices. Each feature vector consists 

Figure 4. Convergence of the adaptation algo­
rithm for 5D and 51 models. 

of 16 mel-frequency cepstra.l coeffi.cients (MFCCs). A sin­
gle Ga.ussia.n PDF is used to model担a.coustical transfer 
function for each position and noise. 

The speech recognition is conducted to exa.mine im­
provements of recognition rates for 

EXPERlMENT5 AND RE5ULT5 3. 

• reverberant speech， 

• noisy reverberant speech. 

Results for reverberant speech a.re indica.ted in Figure 3. 
The Figure shows one male's recognition results averaged 
over four positions by using different a.mount of ada.pta­
tion da.ta. The recognition rates with initial HMMs( clean 
speech HMMs) for the SD and the S1 models are 77.8% 
and 69.4% respectively. By using the proposed method 
without the procedure 2"-'5， the performance is improved 
with only a few adaptation words. Table 1 shows the 
recognition rates with 3 adaptation words. The recogni­
tion rates for the SD and the SI models are improved from 
77.8% and 69.4% to 83.4% and 74.5% respectively. By 
using the known acoustical transfer function， the recog­
nition rates is 83.5% [1J. These results also show there 
is no difference between the previously proposed method 
[lJ (the known acoustica.l transfer function) and the pro­
posed method(the unknown acoustical transfer function). 
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Figure 5. Recognition rates for noisy reverberant 
speech. 

Table 2. Recognition rates[%] with 3 adaptation 
words for noisy reverberant speech. 

1 
1nput 11 

HMM-S I Ad勾・ML I 
| SD I 51 I 5D I SI I 

i Noisy Reverberant speech 11 3.5 1 20.4 1 57.9 I 57.9 1 

On the other hand， the 5D recognition rate using HMM 
trained by reverberant speech is 96.6%. The performance 
is supposed to be still insufficient. 

Figure 4 shows the convergence property of the pro­
posed method for reverberant speech in the 5D and the 
51 models. The log-likelihood of one adaptation word ver­
sus number of iteration in EM algorithm is plotted. The 
results show that one or two iteration 5閏m enough. 

Resu1ts for noisy reverberant speech are indicated in 
Figure 5. The Figure shows one male's recognition results 
averaged over four positions by using different amount 
of adaptation data. The recognition rates with initial 
HMMs(clean speech HMMs) for the 5D and the 51 mod­
els are 3.5% and 20.4% respectively. By using the pro­
posed method， the recognition rates for the 5D and the 
51 modelsむe improved to 57.9% 回d 57.9% with 3 adap­
tation words respectively ( Table 2). 1n comparison with 
the composed HMMs of the clean speech HMMs and the 
noise HMM， the proposed method achieves slight1y higher 
performance using 2"，3 adaptation words. However the 
more sophisticated estimation algorithm is necessary for 
noisy reverberant speech. 

4. CONCLUSION 

We have presented a new method to estimate HMM pa­
rameters of the acoustical transfer function based on the 
HMM decomposition. This method enables to estimate 
the parameters of the acoustical transfer function HMM 
not by the measured impulse responses but by the adapta­
tion speech from the user's location. The experiments in­
dicate that the proposed method improves the recognition 
rates for the speaker dependent models and the speaker 
independent models from 3.5% and 20.4% to 57.9% and 
57.9% respectively with 3 adaptation words for noisy re. 
verberant speech. The performance of the speaker inde­
pendent recognition rates is supposed to be st以msu侃­
cient. The further improvement of the HMM adaptation 
would be necessary as a future work. 
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