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ABSTRACT

This paper presents a new method to estimate HMM
parameters of an acoustical transfer function based on
HMM decomposition in model domain. The model pa-
rameters are estimated by maximizing a likelihood of
adaptation data. The proposed method is obtained as
the natural result of a reverse process of the HMM com-
position. In our previous paper(1], we proposed a method
which can model an observed signal by the composi-
tion of HMMs of clean speech, noise and an acousti-
cal transfer function. The previously proposed method
needs measurement of impulse responses. It is inconve-
nient and unrealistic to measure impulse responses for
a new environment. The new method is able to esti-
mate HMM parameters of the acoustical transfer function
from a small amount of adaptation data. Its effective-
ness is confirmed by a series of speaker dependent and
independent word recognition experiments on simulated
distant-talking speech.

1. INTRODUCTION

In hands-free speech recognition, a speaker inputs his/her
speech from a distance. Therefore the recognition accu-
racy seriously degrades due to influences of reverberation
and environment noise. Many methods have been pro-
posed to cope with the problems caused by additive noise
and convolutional distortion. Among them, speech en-
hancement and model compensation approaches are two
examples. For the speechenhancement approach, spectral
subtraction for additive noise and cepstral mean normal-
ization for convolutional distortion have been proposed
(e.g., [2, 3, 4]). For the model compensation approach,
conventional multi-template technique, model adaptation
(e.g-, [9, 10]) as well as model (de-)composition methods
(e.s., [1, 5, 6, 7, 8, 11, 12]) have been developed.

In our previous paper (1], we apply the HMM composi-
tion to recognition of the signal which is contaminated by
not only additive noise but also reverberation. If the sig-
nal sources are independent each other and additive, the
HMM composition method can be adopted. The noise
and the speech signal are assumed to be independent and
additive in the time domain. While the acoustical trans-
fer function and the speech signal are convolutional in
the time domain, they are assumed to be independent
and additive in the cepstral domain. Therefore the HMM
composition is applied twice in the cepstral domain and
the linear spectral domain. We show effectiveness of the
previously proposed method (1] through the recognition
experiments for noisy reverberant speech. However, how
to estimate HMM parameters of the acoustical transfer
function is a remaining serious problem. The mean vec-

tors of the acoustical transfer function HMM are derived
from measured impulse responses. It is inconvenient and
unrealistic to measure impulse responses for a new envi-
ronment.

This paper presents a new method to estimate HMM
parameters of the acoustical transfer function based on
the HMM decomposition in model domain. The estima-
tion is implemented by maximizing a likelihood of adap-
tation data from any user’s position. In (9], an estimation
method in ML is presented, where the estimation of the
acoustical transfer function is implemented in the time
domain. On the other hand, we estimate the acoustical
transfer function in model domain. Therefore the estima-
tion in model domain can reduce computation amount.

2. MODEL ADAPTATION BY HMM
DECOMPOSITION

Model parameters are estimated in a maximum like-
lihood(ML) manner using the expectation maximiza-
tion(EM) algorithm, where the likelihood of the observed
signal is maximized. The proposed method is based on
the HMM decomposition method. Therefore the estima-
tion of the acoustical transfer function is implemented in
model domain.

The observed signal in the noisy reverberant environ-
ment is represented by

Ocep(t;m) = F " [log{ exp(F(Secep(t; m)
+Heep(t;m))) + N(wsm)}. (1)

Here F, F7! are Fourier(cosine) transform and in-
verse Fourier(cosine) transform respectively. Ocep(t;m),
Scep(t;m) and Heep(t;m) are cepstra for an observed
signal, a clean speech signal and an acoustical transfer
function of quefrency t in m-th frame respectively; and
N (w; m) is linear spectra for a noise signal of frequency w
in m-th frame. Accordingly, the acoustical transfer func-
tion is represented by

Hep(t;m) = F '[log{ exp(F(Oces(t; m)))
=N(w;m)}] = Scep(t; m).

The estimation equation of the acoustical transfer func-
tion HMM is rewritten by

Mu,.., = F*log{ exp(F(Mo..,))
OMn,,. } © Ms..,,
where M represents the associated HMMs; the suffixes

of cep and lin represent the cepstral domain and the lin-
ear spectral domain respectively. The estimation of the
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Figure 1. Parameter estimation by HMM decomposition

acoustical transfer function is implemented by maximiz-
ing the likelihood of the observed signal,

MHccp = a‘rgma'xP(OIMHcer’MsccxﬂMNcep)'

Muc.p

The decomposition of HMMs is represented by © oper-
ator. For example C = A © B means decomposition of C
from A on condition that convolution of C and B equal
to A. If the distributions of A and B are Gaussian, say,
N(pa,o%) and N(up,0%) respectively, the distribution
of Cis N(pa — puB,c’ — o3).

The proposed method is shown in the followings. Here
lis number of iteration.

1.

. Convert MSL,,

Re-estimate parameters of composed HMMs M(o'ch
using adaptation data in the noisy reverberant envi-
ronment by ML estimation in the cepstral domain.

. Estimate parameters of a noise HMM My, from

the signal during noise periods.

and Mx.,, to the linear spectral do-
main:

MS) = exp(F(MS))),

Ocep

M. = exp(F(Mn..;)).

. Decompose Mgzi){“ from Mg;)m'
l O]
Mgf)h n = Mozm © My,

. Convert Mglg,“" to the cepstral domain:

t = !
Msp,., = " (log(Msp, ).
Estimate parameters of the acoustical transfer func-
tion, a mean and a variance, (hg),hsg). Here, to
simplify a description of equations, the clean speech
HMMs Ms,, is represented by tied-mixture HMMs,
(/ik ) szg )

l I =
Ah(Q = h“f o h“:l)
7Y = argmax P(OIWU_L)vMSCw)'

l
(ant! o 2’)
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n" is computed by maximization of the following
auxiliary function,

Q(n“’in“-”)
= —Zz—y(”{ log(o +h(‘ )

ot — ui — K7D — ARY)
202 + RV + 2Ry 7

where o, is the observed noisy reverberant signal at
time t in the cepstrum domain. K and T are the
number of Gaussian distributions and the number of
total frames of adaptation data respectively. On the
assumption that the variance is fixed, Ahg) is derived
from 8Q/8Ahg) =0, then given by

K
(0 mi)

Z‘Yk

Ah(“l) — k=1

+aRY) +

o gl U1

of + k(T

K !

N

k=1 di x hErlz—l)
where m(l) = Z ’y(l)o /‘7(1) mg) is the mean of
ada.ptatlon data at l th iteration by EM algorithm.
Ahs:) is derived from 8Q/8Ah(;g = 0, then given by

f o HE ran) )
(02 + AT + o))

]

20
CPE:) _v(l) +mi 4 (i + hs‘l))(ﬂ»k -+ h(” 2""1.‘))
L) l 1 {
o) = D Al (or =m0,
t
where vg) is the variance of adaptation data at I-

th iteration by EM algorithm. Here we define the
function

of + b + AR - ¢

O E
( & (712‘ +h5,12—1) +Ah:lz))2

Ahg‘? converges to zero by EM algorithm. There-
fore Taylor expansion is able to be applied to the
above equation. The first order expansion is com-
puted. Then Ah( ; is given by
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Figure 2. A top view of the experimental room

Microphone

4m20)
rriag

ard
Xx:‘rff) - 2%
y ol + hgz_l) (o2 + h(al;l))z
T K
Z‘rﬁ') 1(1_1) - 2¢({I)—1)
& (alze + h,,z e (‘72 + h,z )?

7. Compose three distributions according to the equa-
tion (1). [1]

8. Repeat the above procedure until the log likelihood
probability converges.

The procedure is summarized in Figure 1. The mean
and variance of adaptation data are represented by
N(ui”, U;(gz)) at l-th iteration by EM algorithm. The dis-
tribution is converted to the linear spectral domain. The
decomposition of the distribution and noise is applied in
the spectral domain. The obtained distribution is con-
verted to the cepstral domain. Then the acoustical trans-
fer function is decomposed from the obtained distribution
in the cepstral domain.

3. EXPERIMENTS AND RESULTS

Recognition experiments are conducted to evaluate effec-
tiveness of the proposed method. Figure 2 shows a top
view of the experimental room. The sound signal is cap-
tured by using a single directional microphone. We mea-
sured 4 transfer functions corresponding to 4 sound source
positions by using the method reported in [13]. The length
of reverberation time is approximately 180 msec for the
experiment room.

Two speech corpora are used for evaluation. One is the
A-set of the ATR Japanese speech database. The other
is the ASJ continuous speech database. The former con-
tains word utterances and the latter contains sentence ut-
terances. The speaker independent(SI) models are trained
by using utterances from 64 speakersin the ASJ database.
The speaker dependent(SD) models are trained by using
2620 words of one male speaker from the ATR database.
The reverberant speech signal is simulated by linear con-
volution of clean speech signal and measured impulse re-
sponses from the positions pl,...,p4. The noise signal is
collected in a computer room and added to the reverber-
ant speech signal as the SNR is 15dB.

54 context independent phone models are used. Each
phoneme HMM is a left-to-right 3-state tied-mixture
HMM. There are 256 Gaussian mixture components with
diagonal covariance matrices. Each feature vector consists
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Figure 3. Recognition rates for reverberant
speech.

Table 1. Recognition rates(%)] with 3 adaptation
words for reverberant speech.

HMM-S Adap-ML
SD | SI SD | SI

| Reverberant speech [[ 77.8 [ 69.4 [ 83.4 [ 74.5 |

Input
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Figure 4. Convergence of the adaptation algo-
rithm for SD and SI models.

of 16 mel-frequency cepstral coefficients (MFCCs). A sin-
gle Gaussian PDF is used to model an acoustical transfer
function for each position and noise.

The speech recognition is conducted to examine im-
provements of recognition rates for

e reverberant speech,
e noisy reverberant speech.

Results for reverberant speech are indicated in Figure 3.
The Figure shows one male’s recognition results averaged
over four positions by using different amount of adapta-
tion data. The recognition rates with initial HMMs(clean
speech HMMs) for the SD and the SI models are 77.8%
and 69.4% respectively. By using the proposed method
without the procedure 2~3, the performance is improved
with only a few adaptation words. Table 1 shows the
recognition rates with 3 adaptation words. The recogni-
tion rates for the SD and the SI models are improved from
77.8% and 69.4% to 83.4% and 74.5% respectively. By
using the known acoustical transfer function, the recog-
nition rates is 83.5% [1]. These results also show there
is no difference between the previously proposed method
(1] (the known acoustical transfer function) and the pro-
posed method(the unknown acoustical transfer function).
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Figure 5. Recognition rates for noisy reverberant
speech.

Table 2. Recognition rates[%] with 3 adaptation
words for noisy reverberant speech.

HMM-S Adap-ML
SD [ SI SD | SI

| Noisy Reverberant speech || 3.5 | 20.4 [ 57.9 [ 57.9 |

Input

On the other hand, the SD recognition rate using HMM
trained by reverberant speech is 96.6%. The performance
is supposed to be still insufficient.

Figure 4 shows the convergence property of the pro-
posed method for reverberant speech in the SD and the
SI models. The log-likelihood of one adaptation word ver-
sus number of iteration in EM algorithm is plotted. The
results show that one or two iteration seem enough.

Results for noisy reverberant speech are indicated in
Figure 5. The Figure shows one male’s recognition results
averaged over four positions by using different amount
of adaptation data. The recognition rates with initial
HMDMs(clean speech HMMs) for the SD and the SI mod-
els are 3.5% and 20.4% respectively. By using the pro-
posed method, the recognition rates for the SD and the
SI models are improved to 57.9% and 57.9% with 3 adap-
tation words respectively (Table 2). In comparison with
the composed HMMs of the clean speech HMMs and the
noise HMM, the proposed method achieves slightly higher
performance using 2~3 adaptation words. However the
more sophisticated estimation algorithm is necessary for
noisy reverberant speech.

4. CONCLUSION

We have presented a new method to estimate HMM pa-
rameters of the acoustical transfer function based on the
HMM decomposition. This method enables to estimate
the parameters of the acoustical transfer function HMM
not by the measured impulse responses but by the adapta-
tion speech from the user’s location. The experiments in-
dicate that the proposed method improves the recognition
rates for the speaker dependent models and the speaker
independent models from 3.5% and 20.4% to 57.9% and
57.9% respectively with 3 adaptation words for noisy re-
verberant speech. The performance of the speaker inde-
pendent recognition rates is supposed to be still insuffi-
cient. The further improvement of the HMM adaptation
would be necessary as a future work.
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