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ABSTRACT 
This paper presents a robust speech recognition method 

based on the HMM composition for the noisy room acous- 
tics distorted speech. The method realizes an improved user 
interface such as the user is not encumbered by microphone 
equipments. The proposed HMM composition is obtained 
by naturally extending the HMM composition method of an 
additive noise to  that of the convolutional room acoustics 
distortion. The HMM composition is conducted by 2 steps: 
1)Composition of HMMs of a speech and acoustical transfer 
function in cepstrum domain, 2)Composition of distorted 
speech and noise HMMs in linear spectral domain. The 
speaker dependent/independent word recognition experi- 
ments are carried out using the speech database contam- 
inated by the additive noise and convolutional room acous- 
tics distortion. The evaluation experiments are also con- 
ducted for unknown testing sound source positions. These 
results clarified the effectiveness of the proposed method. 

1. INTRODUCTION 

In spite of recent advances, the speech recognition technol- 
ogy did not reach to  the practical use in the real world. The 
reason is that the advances are almost achieved in the error 
reduction of the clean speech recognition. 

A key issue way to  the practical use is a development of a 
recognition technology of noise and room acoustics distorted 
speech. This technology will especially take an important 
role on recognition of distant-talking speech. 

The accuracy of speaker independent speech recognition 
is made a remarkable progress by the arrival of stochastic 
modeling of speech, HMM, and its training algorithms. Al- 
though the HMM brought a high recognition accuracy, a 
speaker must be equipped a close-talking microphone. If 
the speaker inputs his speech from the distance or through 
a telephone channel, the accuracy will be drastically de- 
graded by the influences of the room acoustic or telephone 
channel distortion and environment noises. Therefore we 
have to overcome the two problems such as, 

0 Additive noise 

0 Convolutional distortion 

Many works are presented to solve these problems. These 
approach are summarized as follows: 

0 Speech Enhancement. 
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0 Model Modification. 

As for the speech enhancement approach, the spectral 
subtraction method for an additive noise and the cepstral 
mean normalization method for a convolutional noise had 
been proposed and confirmed their effectiveness[l, 21. As for 
the model modification approach, the conventional multi- 
template approach, and model adaptation approach[8] and 
the model (de-)composition approach[3,4, 6)  had been pro- 
posed. Among these approaches the HMM composition ap- 
proach is the most promising, because the HMM for the 
noisy speech can be easily generated by composing the 
speech HMMs and the noise HMM which trained during 
noise period. The paper(4, 61 showed the composed noisy 
HMM outperforms very high accuracy. 

In this paper, we apply the HMM composition to the 
recognition of the speech which is contaminated by not only 
an additive noise but also the room acoustics distortion. 
If the components are independent each other and addi- 
tive, HMM composition can be adopted. The noise and 
speech are independent and additive in linear spectral do- 
main. While the transfer function and speech are convolu- 
tional in linear spectral domain, they are independent and 
additive in cepstral domain. Thus the HMM composition 
is applicable for noise and room acoustics distorted speech. 
Some studies have been already presented for the problem 
of spectral tilt compensation of speech with a noise and 
channel distortioni5, 71. This paper addresses the compen- 
sation not only the spectral tilt but also room acoustical 
transfer function. 

This paper presents the HMM composition algorithm for 
the noise and room acoustics distorted speech and evalu- 
ates its effectiveness by the recognition experiments of the 
distant-talking speech in a noisy room, where the speech is 
suffered from the noise and room acoustics distortion. 

2. HMM COMPOSITION 
On the assumption that the speech and noise signal are 
independent, the observed signal is represented by 

O ( t )  = S ( t )  + N ( t )  

The conventional approach estimates noise statistics dur- 
ing the noise period and recognizes an input noisy speech 
by using the noise added reference patterns. The HMM 
composition executes addition in HMM parameter domain 
instead of the addition in signal domain. Since the signal 
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level is generally different between training and testing, an 
adjustment factor k is introduced. Thus the observed signal 
is represented by 

O ( t )  = S ( t )  + “t )  

where O ( t ) , S ( t )  and N ( t )  are the observed noisy sig- 
nal, speech signal and noise signal, respectively. Since this 
relation is preserved in linear spectral domain, we regard 
O ( t ) ,  S ( t ) , N ( t )  as short time linear spectra whose analysis 
window starts at time t from now on. 

Generally, parameters for speech recognition are repre- 
sented by the cepstrum. The parameters have to be trans- 
formed to linear domain as an addition of the speech and 
noise holds(4, 61. 

As for a convolutional distortion, the observed distorted 
spectrum is represented by 

O ( t )  = H ( t )  . S ( t )  

where H ( t )  is a transfer function from the sound source to 
the microphone. H ( t )  is a function of time t since the sound 
source may move. The multiplication can be converted to 
sum in cepstral domain as, 

O c e p ( t )  = H e e p ( t )  t S c e p ( t )  

where, Ocep( t ) ,  H c e p ( t )  and SCep( t )  are cepstra for the ob- 
served signal, acoustic transfer function and speech signal, 
respectively. Therefore the observed signal is represented 
by 

~ ( t )  = e z p ( F - l ( S c e , ( t )  + H e e p ( t ) ) )  + k N ( t )  (1) 

Log Spectrum $, 
Cepstrum 

ComposedHMM 

Figure 1. Block diagram of HMM Composition 

This procedure is summarized in Fig.1. The cosine trans- 
form, inverse cosine transform, exponential transform and 
log transform are conducted on HMM parameters. 

The procedure is as follows: 

1. Estimate HMMs of the speech, noise and acoustical 
transfer function in cepstral domain. 

2. Compose HMMs of the speech and acoustical transfer 
function in cepstral domain. 

P ( c e p - S H )  = cL(cep-S) + & c e p N )  

C ( c e p - ~ ~ )  = x ( c e p - s )  + x ( c e p - ~ )  

and C ( c e p - S H )  are a mean vector and covariance matrix 
of HMMs of the speech, acoustical transfer function, 
and composed HMMs in cepstral domain, respectively. 

Here, f ’ ( c e p - S ) ,  x ( c e p - S ) , P ( c e p - H ) ,  x ( c e p - N ) , P ( c e p - S H )  

3. Cosine transform of each Gaussian pdf of HMMs. 

p(iog-sH) = . p ( c e p - S H )  

C(log-SH)  = r .  C f e e p - S H )  . r-l 
Here, I? is a cosine transform matrix, p ( l O g s ~ )  and 
C ( l o g S ~ )  are a mean vector and covariance matrix of 
Gaussian pdf in log power spectral domain, respec- 
tively. 

4. Exponential transform to linear spectral domain. The 
normal random vectors obtained by exponential trans- 
form, 2 = e a p Y ,  has log normal distribution. A mean 
and covariance are given by, 

- 
g(:in-S H ) ,  i i  - & l og -SH) , i  ‘&iog-SH), j  *{exp(afiog-SH),ij -1)) 
Here, f ’ ( l i n - S H )  and C ( ~ ~ , - S H )  are a mean vector and 
covariance matrix in linear power spectral domain. 

5 .  Compose two distributions according to the 
equation( 1). 

P ( I r n - S H N )  = &lin-SH)  + k‘ CL(hn-N) 

x ( i Z n - S H N )  = C ( l i n - S H )  t k2 . ~ ( 1 t n - N )  

Here, P ( I % ~ - N ) ,  C ( l z n - N ) , p ( l t n - S H N )  and C ( l r n - S H N )  are 
a mean vector and covariance matrix of the noise and 
composed model in linear power spectral domain, re- 
sp ect ively. 

6. Log transform of composed HMM. 

p ( l o g - S H N ) , z  = 1% & l t n - S H N ) , t  

+ 11 1 
2 & l i n - S H N ) , i  ‘ / l ( l i n - S H N ) , i  

uf l in-S H N )  , i  j 
- -{ 

7. Inverse cosine transform to cepstral domain. 

IL(cep-SHN) = r-’ . p ( l o g - S H N )  

x ( c e p - S H N )  = r-l ’ x ( l o g - S H N )  * 

The HMM recognizer decodes the observed signal on a trel- 
lis diagram according to maximize the log likelihood. De- 
coded path will bring a optimal combination of a speech, 
transfer function and noise. 
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3. EXPERIMENTS 
The speech recognition experiments are carried out to in- 
vestigate the effectiveness of the proposed method. The 
evaluation of the length of the impulse response and of un- 
known testing sound source positions is also conducted. 

We conducted recognition experiments of the degraded 
speech uttered in a noisy room. Fig.2 shows the room used 
in the experiment. We measured 9 transfer functions from 
9 positions to the microphone. The former five positions, 
hi,. . . , hb are used for the model composition and the lat- 
ter four positions, p l , " - , p 4  are used for the recognition 
tests. The transfer functions are measured by the sweep 
method. The length of the original impulse response was 
180msec(L=180msec). The test data are simulated by the 
linear convolution of speech corpus and the measured trans- 
fer function. The Fig.3 shows the cepstral coefficients of 
acoustical transfer functions from several training positions. 
This differences will cause the degradation on speech recog- 
nition. 

r 5m80 4 

j 

Figure 2. Room environment 

- b3 --- h? - 

order 

Figure 3. Differences of cepstral coefficients 

Speech corpus for evaluation is ATR Japanese speech 
database Set-A and ASJ continuous speech database. This 
database contains word and sentence utterances by an- 
nouncers. The recognition algorithm is based on 256 tied- 
mixture diagonal covariance HMMs. The HMM has 5 states 
and 3 self loops. The Context independent 54 phone models 
are trained by 2620 words. The other 500 words are used 

and added to  the clean speech data or acoustics distorted 
data as the SNR is 15dB. 

Speech signal is sampled in 12kHz and windowed by 
32msec Hamming window every 8msec. Then FFT is used 
to  calculate 16-order MFCCs and a power. In the recogni- 
tion, a power term is not used because it is only necessary 
to adjust the SNR in the HMM composition. 

We assigned one state for the noise HMM and 5 states for 
the HMM of the acoustical transfer function. Fig.4 shows 
the structure of the HMM of the acoustical transfer func- 
tion. Each state directly corresponds to  one of the training 
positions, hl, * , hs . The single Gaussian pdf is used for 
these HMMs. 

Figure 4. Ergodic HMM of acoustical transfer func- 
tion 

The speech recognition experiments are conducted. The 

Improvements of a recognition rate for the noisy dis- 
torted speech. 

0 Evaluation of a speaker dependent(SD) and speaker 
independent (SI) speech recognition performance. 

0 Performance for an unknown sound source position. 

The spectral analysis for speech recognition is based on 
short time windowing. The multiplication of short time 
signal spectra and the transfer function is equivalent to  the 
periodic convolution in time domain. However, an actual 
distorted signal is made by the linear convolution. Since the 
proposed HMM composition of the signal and room acousti- 
cal transfer function only realizes the periodic convolution, 
the composed HMM can't model a actual room acoustics 
distorted signal accurately. The difference of using periodic 
and linear convolution will be large according to the length 
of impulse response. 

In this paper, the transfer function in cepstral domain is 
obtained by subtracting the cepstrum coefficients of origi- 
nal speech from those of convolutioned speech. Although 
this transfer function will be affected by the predecessor 
samples, HMM would be able to model the variation by 
covariance matrix, C, of Gaussian pdf. 

The results are listed in Table.1. The results are summa- 
rized as follows: 

points to be investigated are: 

for testing. We prepared speaker dependent(SD) and inde- The HMM composition improves the speech recogni- 
pendent(S1) HMMs. The SD HMMs are trained by 1 male tion rate both for noisy speech and distorted speech, 
and the SI HMMs are trained by 64 speakers. The exper- from 29.8% to 92.4% and from 86.4 to 92.0%, re- 
iments are carried out by using one male speaker used for spectively. This means HMM composition successfully 
SD training. The noise data is collected in a computer room models the noisy or distorted speech. 
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Input HMM-S 
Noise Composition X 

Acoustics Composition X 

Clean speech 96.6192.6 
Noisy speech 29.8147.4 

Distorted speech 86.4/74.9 
Noisy Distorted Speech 15.0124.5 

For the noisy distorted speech, the improvement is ob- 
tained from 15.0% to 76.5%. Although the improve- 
ment is about 61.5%, the performance is supposed to 
be still insufficient. SD recognition rate for one known 
training position using HMM trained by the noisy dis- 
torted speech is 82.2%. The recognition rate for the 
same data using HMM-SHN is 77.2%. 

The effect of the covariance matrix, E, of HMM of the 
acoustical transfer function is disappointing. This is 
because the variation is too large than expected and 
distributed dependently on predecessor speech charac- 
teristics. 

Next, we evaluate the performance of the model for the 
unknown testing sound source positions. Table.:! shows av- 
erage SD recognition rates for the known training and un- 
known testing positions. It is confirmed that the degrada- 
tion between the training and testing sound source positions 
is relatively small for all composed HMM. The Fig.5 shows 
the euclidian distances and recognition rates by using each 
positions' acoustical transfer function for unknown testing 
position p 4 .  This table indicates a closest position results 
best performance and difference between the using acous- 
tical transfer function of the closest position and using the 
ergodic HMM of the acoustical transfer function is quite 
small in this experiment. 

HMM-SN HMM-SH(p) HMM-SH(p, E) HMM-SHN(p) HMM-SHN(p, E) 
0 X X 0 0 
X 0 0 0 0 

92.4183.2 

72.3155.4 76.5159.1 66.6142.4 
92.0177.3 87.8170.4 

Table 2. Recognition rates for known/unknown po- 
sit ions [ %] 

Distorted s~eech186.4/86.11 92.0/91.7 I 87.8/86.9 
Input I HMM-S IHMM-SH(p)IHMM-SH(p, E) 

positions of sound source 

Figure  5. Recognition rates and distances 

We have also examined the effect of a length of the im- 
pulse response. The several distorted signals are artificially 
made by L=180,100 and 32msec impulse responses by cut- 
ting out the original one. The Table.3 shows the results by 
HMM-SH. Although the simulated impulse response is not 

exist in real room, it is observed that the effects decrease 
according to the length of the impulse response. 

Table 3. SD/SI recognition rates vs. the length  of 
impulse response [ %] 

Input I 180msec I 100msec I 32msec 
Distorted speech I 87.7170.4 I 912178.6 I 95.41882 

4. CONCLUSION 

This paper presents a novel method which realizes an robust 
speech recognition of the noisy and room acoustics distorted 
speech. The method is based on the composition of HMMs 
of the speech, noise and acoustical transfer function. The 
experiments indicate that the proposed method improves 
the speaker dependent 500 Japanese word recognition rates 
from 15% to 76.5% for the noisy distorted speech. This 
improvement is less than expected by the improvements 
using either two composed HMM, HMM-SN or HMM-SH. 
The further improvement of the composed HMM for noisy 
distorted speech would be needed as a future work. The 
distorted speech from the unknown testing sound source 
positions is also evaluated. The degradation is found to be 
very small. It is also found that the variance of HMM of 
the acoustical transfer function is not able to  compensate 
the difference between the linear convolution and periodic 
convolution. 
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