

The 22nd Meeting on Image Recognition and Understanding

CONFIDENTIAL EXTENDED ABSTRACT.

DO NOT DISTRIBUTE ANYWHERE.

 1

Reduce GPU Memory Usage of Training Neural
Network by CPU Offloading

Weihao Zhuang1,a) Tristan Hascoet1,b) Ryoichi Takashima1,c)

Tetsuya Takiguchi1,d) Yasuo Ariki1,e)

Abstract

Recently, Convolutional Neural Networks (CNN) have

demonstrated state-of-the-art results on various computer

vision problems. However, training CNNs require

specialized Graphical Processing Units (GPU) with large

memory. Given the ubiquity of CNN in computer vision,

optimizing the memory consumption of CNN training

would have wide spread practical benefits. In this paper,

we propose an algorithm to reduce the GPU memory

needed to train neural network by offloading the input

activation of hidden layers to the CPU: during the forward

pass, we transfer input activations to the CPU upon

computation to free up GPU memory, and transfer these

activations back to the GPU when needed by the backward

pass. Our algorithm neither change the architecture of

neural networks, nor use any compression algorithm. On

the VGG architecture, our algorithm achieves a reduction

of 29.6% of the GPU memory usage while increasing the

computation time by only 4%. On MobileNet, we reduce

the memory consumption of training iterations by 68.4%

with a minimal overhead of 14% in computation time.

1. Introduction

Deep convolutional neural networks have shown

unprecedented progress in computer vison since

Krizhevsky et al. [1] won the 2012 ILSVRC. Since then,

CNN have been successfully applied to many different

real-world applications. The backpropagation algorithm

need the hidden layer activations to accumulate in live

memory during the forward pass in order to compute the

gradients of the weights during the backward pass, which

creates a memory bottleneck. Hence, training state-of-the-

art CNN has required special hardware with large memory

capacity as typical desktop memory is too small for

backpropagation training. Meanwhile, a number or resent

work have demonstrated the benefits of large batch training

[2], further increasing these memory requirements. Hence

optimizing the memory usage of CNN training would

enable both research on optimization and training on low-

end GPU devices.

 There is an inherent trade-off between memory

consumption and computation time: gradient

checkpointing methods [3] only store a fraction of the

hidden activations and reconstructing the missing

activations from the stored ones during the backward pass.

Reversible Network (RevNet)[4] constrain the architecture

of Residual Networks to invertible transformations so that

each layer’s input activations are reconstructed from their

output during the backward pass.

 In this paper we design a general algorithm to reduce the

GPU memory usage of CNN training by offloading the

input activation of hidden layers into CPU memory upon

computation during the forward pass, and transferring

these activations back to GPU as needed during the

backward pass. The challenge is to minimize the additional

time of CPU offloading. We present several tricks to

efficiently parallelize computation and data transfer to

reduce the memory cost with a minimal additional time.

Our algorithm allows us to reduce by 34.4% and 48.7% the

memory required to train the VGG and MobileNet

architectures with a minimal time overhead of 1% and 4%

respectively.

2. Related Work

 Several approaches have been proposed to reduce

memory usage and computation consumption. MobileNet

1 Kobe University
a) 191x124x@stu.kobe-u.ac.jp
b) tristan.hascoet@gmail.com
c) rtakashima@port.kobe-u.ac.jp
d) takigu@kobe-u.ac.jp
e) ariki@kobe-u.ac.jp

The 22nd Meeting on Image Recognition and Understanding

 2

[5] is a light neural network using depth-wise separable

convolution to reduce computation complexity to perform

inference on low performance device. Quantized Neural

Network (QNN) [6] is designed to reduce memory by

performing low-precision arithmetic operations.

 Gradient checkpointing is an efficient trick for reducing

CNN memory usage: it only stores a few of the hidden

layers input activations during the forward pass and

reconstruct the lost activations during the backward pass.

Gomez et al. propose a Reversible Residual Network

(RevNet) architecture to reduce memory consumption.

RevNet uses invertible residual modules to recompute the

hidden activation of lower layers from those of higher

layers. Hence, activations need not to be stored during the

forward pass as they can be recomputed during the

backward pass. RevNet offers an efficient memory and

computation trade off than gradient checkpointing but

imposes additional constraint on the network architecture.

In contrast, our algorithm does not add any additional

computation nor architecture restrictions we propose to

transfer the hidden activations of each layers from GPU to

CPU memory. The key challenge for our algorithm is the

efficient parallelization of data transfer and computations.

3. Methods

 We introduce how to implement our algorithm in this

section; Figure 1 illustrates a simple neural network

architecture, in which orange circles represent successive

layers of the neural network.

Fig. 1: Use pinned memory strove input activation of hidden

layer

When we train CNN, the input activations will

accumulate in memory during the forward pass. Each

stored activation is stored only to be used for the

computation of the layer weight gradients during the

backward pass. Hence, the activations of lower layers can

be temporarily freed from GPU memory during the

computation of the forward and backward pass through the

higher layers.

We propose to offload these activations to the CPU. For

example, when the forward pass through the first layer

completes, our algorithm offloads the input activation of

first layer to CPU memory and forward its output to the

second layer. In the backward pass, the input data of each

layer is transferred back to GPU memory right before

computation of the weight gradients.

There are two types of CPU memory: pageable memory

and pinned memory are used to transfer data between CPU

and GPU. In terms of transfer speed, using pinned memory

is faster than pageable memory. Although pinned memory

is providing high transfer speed, the time to allocate them

are expensive. So, we allocate pinned memory beforehand,

during the instantiation of the CNN.

Fig. 2: Use another stream doing data transfer

 The key problem we have to solve is how to overlap

computation and data transfer so that, in the forward pass,

we do not have to wait for the data transfer to CPU to finish

before computing the next layer of the forward pass, which

would slow down the training process. Similarly, during

the backward pass, we would also like to avoid the

additional time of waiting for the data transfer to complete

before computing the gradient. Therefore, finding an

efficient way to parallelize computation and data transfer

is important.

Fig. 3: Some tricks use in our algorithm in backward pass

 In our implementation, we use multithreading to

parallelize the CPU-side operations and CUDA streams for

GPU-side data transfer.

As shown in Figure 2, we dedicate a CUDA stream to

perform the computation and another CUDA stream to

transfer the input activations to CPU during the forward

CPU Memory

Forward

Backward

Input data

GPU

GPU

Pinned Memory

1 2
ForwardStream 1

Stream 2

Input

54
Backward

Stream 3

The 22nd Meeting on Image Recognition and Understanding

 3

pass.

 The parallelization of the backward pass is more

complex than the forward pass because we cannot

parallelize the computation and data transfer within one

hidden layer as we need the input activation to reside in

GPU memory before computing the weight gradients.

 To improve parallelization, we synchronize the data

transfer to GPU of the activation of a given layer with the

computation of its upper layer. Figure 3 shows the example

of the data transfer synchronization in layer 4 and 5 of our

example network. This figure shows that the transfer of

input activation of layer 4 to GPU is overlapped with the

computation of the backward pass through layer 5.

4. Experiment

 In this section, we discuss the performance and results

of our implementation. Table 1 describes our hardware

configuration:

Table. 1: Experiment configuration

CPU Intel Core i5-8400 2.80GHz

GPU GTX 1060 6GB

Motherboard GIGABYTE B360M HD3

RAM 16GB DDR4 2400MHz

4.1 Transfer data in pinned memory and pageable

memory

Fig. 4: Speed of transfer data between CPU and GPU with and

without pinned memory

 Figure 4 illustrated the transfer speed for different

device communication. The timings presented represent

the transfer time for a batch of half precision images 224

×224×3with different batch sizes. Data transfer speed are

measured for both pinned memory and pageable memory.

Transfer times increase linearly with the batch size. Pinned

memory is 2.5 times faster than pageable memory when

transfer data from GPU to CPU and 3 times faster from

CPU to GPU. However, allocating pinned memory is very

slow so it is necessarily to allocate pinned memory before

training.

4.2 Parallel computing and data transfer

 Figure 5 illustrates the parallelization of data transfer

and computation. Brown areas illustrate data transfer

operations and blue areas illustrate computation operations.

The top figure shows the sequence of operations performed

without parallelization: computations and data transfer are

executed sequentially so that the GPU cores spend a lot of

idle time and the computation is slowed down by data

transfer.

 The figure 5b shows the inability of CPU multithreading

to parallelize data transfer and computations

 Figure 5c shows that CUDA streams successfully

overlap computation and data transfer as we expect it. One

stream is used for computation and another is used for data

transfer, there are still some blank in computation because

computation in forward pass faster than data transfer. This

is responsible for the small overhead in computation time

we report.

(a) Without parallelization

(b) Only use CPU multithreading

(c) Use CUDA streams

Fig. 5: Result of GPU stream timeline from nvidia visual

profile, MobileNet forward pass with 128 batch size

4.3 Result

 Table 2 and table 3 show the performance of training

VGG, ALexNet and MobileNet with 16-bit type of weights

using our algorithm.

Table 2: Reduce memory usage by using our algorithm training

neural networks

Batch Size 16 32 64 128 256

VGG 18.4% 25.0% 29.6% - -

AlexNet 6.5% 11.7% 20.3% 26.4% 27.5%

MobileNet 65.6% 66.8% 67.9% 68.4% -

The 22nd Meeting on Image Recognition and Understanding

 4

As we can see from the results, we can dramatically

reduce memory usage when training neural networks.

Table 2, indicates that further memory reduction can be

gained with larger batch sizes.

 But MobileNet memory is significantly reduced

compared to VGG and AlexNet because max pooling is

used in both VGG and AlexNet, which adds additional

memory consumption.

 It can be seen from the table 3 that use more GPU stream

to parallel training neural network is significantly efficient

than only using CPU multithreading.

 However, our algorithm depends on the cooperation

between GPU computing speed and motherboard PCI-E

transfer speed. For instance, when we training neural

networks the computation is faster than data transfer in

forward pass, we have to waiting data completely transfer

into CPU memory. How to select the appropriate hardware

to implement our algorithm is a problem needs to be

considered.

5. Conclusion

 Training convolution neural networks require high

computing and large memory usage that is hard to

implement in low performance device. We propose a

general algorithm to reduce memory usage training neural

networks by put input activation of each layers into CPU

memory with using more GPU stream to parallel

computing and data transfer. The result show that without

much affecting speed of training, memory usage can be

dramatically reduced.

References

[1] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).

Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing

systems (pp. 1097-1105).

[2] Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,

Frostig, R., & Dahl, G. E. (2018). Measuring the effects of

data parallelism on neural network training. arXiv preprint

arXiv:1811.03600.

[3] Martens, J., & Sutskever, I. (2012). Training deep and

recurrent networks with hessian-free optimization. In Neural

networks: Tricks of the trade (pp. 479-535). Springer, Berlin,

Heidelberg.

[4] Gomez, A. N., Ren, M., Urtasun, R., & Grosse, R. B. (2017).

The reversible residual network: Backpropagation without

storing activations. In Advances in neural information

processing systems (pp. 2214-2224).

[5] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,

W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient

convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861.

[6] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., &

Bengio, Y. (2017). Quantized neural networks: Training

neural networks with low precision weights and

activations. The Journal of Machine Learning

Research, 18(1), 6869-6898.

Fig. 6: GPU stream timeline of training MobileNet with batch size 128

Stream1：
Stream2：
Stream3：

Forward pass Backward pass

Data transfer from GPU to CPU Data transfer from CPU to GPU

Table. 3: Result of time increasing using our algorithm training neural networks

Batch Size 16 32 64 128 256

VGG

CPU

multithreading
1.19x 1.23x 1.18x - -

GPU stream 1.01x 1.01x 1.04x - -

AlexNet

CPU

multithreading
1.17x 1.25x 1.20x 1.25x 1.26x

GPU stream 1.0x 1.0x 1.02x 1.03x 1.06x

MobileNet

CPU

multithreading
1.41x 1.46x 1.35x 1.32x -

GPU stream 1.21x 1.19x 1.18x 1.14x -

