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Abstract 

Recently, Convolutional Neural Networks (CNN) have 

demonstrated state-of-the-art results on various computer 

vision problems. However, training CNNs require 

specialized Graphical Processing Units (GPU) with large 

memory. Given the ubiquity of CNN in computer vision, 

optimizing the memory consumption of CNN training 

would have wide spread practical benefits. In this paper, 

we propose an algorithm to reduce the GPU memory 

needed to train neural network by offloading the input 

activation of hidden layers to the CPU: during the forward 

pass, we transfer input activations to the CPU upon 

computation to free up GPU memory, and transfer these 

activations back to the GPU when needed by the backward 

pass. Our algorithm neither change the architecture of 

neural networks, nor use any compression algorithm. On 

the VGG architecture, our algorithm achieves a reduction 

of 29.6% of the GPU memory usage while increasing the 

computation time by only 4%. On MobileNet, we reduce 

the memory consumption of training iterations by 68.4% 

with a minimal overhead of 14% in computation time. 

 

1. Introduction 

Deep convolutional neural networks have shown 

unprecedented progress in computer vison since 

Krizhevsky et al. [1] won the 2012 ILSVRC. Since then, 

CNN have been successfully applied to many different 

real-world applications. The backpropagation algorithm 

need the hidden layer activations to accumulate in live 

memory during the forward pass in order to compute the 

gradients of the weights during the backward pass, which 

creates a memory bottleneck. Hence, training state-of-the- 

art CNN has required special hardware with large memory 

capacity as typical desktop memory is too small for 

backpropagation training. Meanwhile, a number or resent 

work have demonstrated the benefits of large batch training 

[2], further increasing these memory requirements. Hence 

optimizing the memory usage of CNN training would 

enable both research on optimization and training on low-

end GPU devices. 

  There is an inherent trade-off between memory 

consumption and computation time: gradient 

checkpointing methods [3] only store a fraction of the 

hidden activations and reconstructing the missing 

activations from the stored ones during the backward pass. 

Reversible Network (RevNet)[4] constrain the architecture 

of Residual Networks to invertible transformations so that 

each layer’s input activations are reconstructed from their 

output during the backward pass.  

  In this paper we design a general algorithm to reduce the 

GPU memory usage of CNN training by offloading the 

input activation of hidden layers into CPU memory upon 

computation during the forward pass, and transferring 

these activations back to GPU as needed during the 

backward pass. The challenge is to minimize the additional 

time of CPU offloading. We present several tricks to 

efficiently parallelize computation and data transfer to 

reduce the memory cost with a minimal additional time. 

Our algorithm allows us to reduce by 34.4% and 48.7% the 

memory required to train the VGG and MobileNet 

architectures with a minimal time overhead of 1% and 4% 

respectively. 

 

2. Related Work 

  Several approaches have been proposed to reduce 

memory usage and computation consumption. MobileNet 
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[5] is a light neural network using depth-wise separable 

convolution to reduce computation complexity to perform 

inference on low performance device. Quantized Neural 

Network (QNN) [6] is designed to reduce memory by 

performing low-precision arithmetic operations.  

  Gradient checkpointing is an efficient trick for reducing 

CNN memory usage: it only stores a few of the hidden 

layers input activations during the forward pass and 

reconstruct the lost activations during the backward pass.  

Gomez et al. propose a Reversible Residual Network 

(RevNet) architecture to reduce memory consumption. 

RevNet uses invertible residual modules to recompute the 

hidden activation of lower layers from those of higher 

layers. Hence, activations need not to be stored during the 

forward pass as they can be recomputed during the 

backward pass. RevNet offers an efficient memory and 

computation trade off than gradient checkpointing but 

imposes additional constraint on the network architecture. 

In contrast, our algorithm does not add any additional 

computation nor architecture restrictions we propose to 

transfer the hidden activations of each layers from GPU to 

CPU memory. The key challenge for our algorithm is the 

efficient parallelization of data transfer and computations. 

 

3. Methods 

  We introduce how to implement our algorithm in this 

section; Figure 1 illustrates a simple neural network 

architecture, in which orange circles represent successive 

layers of the neural network.  

 

Fig. 1: Use pinned memory strove input activation of hidden 

layer 

 

When we train CNN, the input activations will 

accumulate in memory during the forward pass. Each 

stored activation is stored only to be used for the 

computation of the layer weight gradients during the 

backward pass. Hence, the activations of lower layers can 

be temporarily freed from GPU memory during the 

computation of the forward and backward pass through the 

higher layers. 

We propose to offload these activations to the CPU. For 

example, when the forward pass through the first layer 

completes, our algorithm offloads the input activation of 

first layer to CPU memory and forward its output to the 

second layer. In the backward pass, the input data of each 

layer is transferred back to GPU memory right before 

computation of the weight gradients. 

There are two types of CPU memory: pageable memory 

and pinned memory are used to transfer data between CPU 

and GPU. In terms of transfer speed, using pinned memory 

is faster than pageable memory. Although pinned memory 

is providing high transfer speed, the time to allocate them 

are expensive. So, we allocate pinned memory beforehand, 

during the instantiation of the CNN.  

 

Fig. 2: Use another stream doing data transfer  

 

  The key problem we have to solve is how to overlap 

computation and data transfer so that, in the forward pass, 

we do not have to wait for the data transfer to CPU to finish 

before computing the next layer of the forward pass, which 

would slow down the training process. Similarly, during 

the backward pass, we would also like to avoid the 

additional time of waiting for the data transfer to complete 

before computing the gradient. Therefore, finding an 

efficient way to parallelize computation and data transfer 

is important.  

 

Fig. 3: Some tricks use in our algorithm in backward pass   

 

  In our implementation, we use multithreading to 

parallelize the CPU-side operations and CUDA streams for 

GPU-side data transfer.  

As shown in Figure 2, we dedicate a CUDA stream to 

perform the computation and another CUDA stream to 

transfer the input activations to CPU during the forward 
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pass.  

  The parallelization of the backward pass is more 

complex than the forward pass because we cannot 

parallelize the computation and data transfer within one 

hidden layer as we need the input activation to reside in 

GPU memory before computing the weight gradients. 

  To improve parallelization, we synchronize the data 

transfer to GPU of the activation of a given layer with the 

computation of its upper layer. Figure 3 shows the example 

of the data transfer synchronization in layer 4 and 5 of our 

example network. This figure shows that the transfer of 

input activation of layer 4 to GPU is overlapped with the 

computation of the backward pass through layer 5.  

 

4. Experiment 

  In this section, we discuss the performance and results 

of our implementation. Table 1 describes our hardware   

configuration:  

 

Table. 1: Experiment configuration 

CPU Intel Core i5-8400 2.80GHz 

GPU GTX 1060 6GB 

Motherboard GIGABYTE B360M HD3 

RAM 16GB DDR4 2400MHz  

 

4.1 Transfer data in pinned memory and pageable 

memory 

 
Fig. 4: Speed of transfer data between CPU and GPU with and 

without pinned memory   

 

  Figure 4 illustrated the transfer speed for different 

device communication. The timings presented represent 

the transfer time for a batch of half precision images 224

×224×3with different batch sizes. Data transfer speed are 

measured for both pinned memory and pageable memory. 

Transfer times increase linearly with the batch size. Pinned 

memory is 2.5 times faster than pageable memory when 

transfer data from GPU to CPU and 3 times faster from 

CPU to GPU. However, allocating pinned memory is very 

slow so it is necessarily to allocate pinned memory before 

training. 

4.2 Parallel computing and data transfer 

  Figure 5 illustrates the parallelization of data transfer 

and computation. Brown areas illustrate data transfer 

operations and blue areas illustrate computation operations. 

The top figure shows the sequence of operations performed 

without parallelization: computations and data transfer are 

executed sequentially so that the GPU cores spend a lot of 

idle time and the computation is slowed down by data 

transfer. 

  The figure 5b shows the inability of CPU multithreading 

to parallelize data transfer and computations 

 Figure 5c shows that CUDA streams successfully 

overlap computation and data transfer as we expect it. One 

stream is used for computation and another is used for data 

transfer, there are still some blank in computation because 

computation in forward pass faster than data transfer. This 

is responsible for the small overhead in computation time 

we report. 

 

 

(a) Without parallelization 

 

(b) Only use CPU multithreading 

 

(c) Use CUDA streams 

Fig. 5: Result of GPU stream timeline from nvidia visual 

profile, MobileNet forward pass with 128 batch size  

4.3 Result 

  Table 2 and table 3 show the performance of training 

VGG, ALexNet and MobileNet with 16-bit type of weights 

using our algorithm. 

 

Table 2: Reduce memory usage by using our algorithm training 

neural networks 

Batch Size 16 32 64 128 256 

VGG 18.4% 25.0% 29.6% - - 

AlexNet 6.5% 11.7% 20.3% 26.4% 27.5% 

MobileNet 65.6% 66.8% 67.9% 68.4% - 
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As we can see from the results, we can dramatically 

reduce memory usage when training neural networks. 

Table 2, indicates that further memory reduction can be 

gained with larger batch sizes.  

  But MobileNet memory is significantly reduced 

compared to VGG and AlexNet because max pooling is 

used in both VGG and AlexNet, which adds additional 

memory consumption. 

  It can be seen from the table 3 that use more GPU stream 

to parallel training neural network is significantly efficient  

than only using CPU multithreading. 

  However, our algorithm depends on the cooperation 

between GPU computing speed and motherboard PCI-E 

transfer speed. For instance, when we training neural 

networks the computation is faster than data transfer in 

forward pass, we have to waiting data completely transfer 

into CPU memory. How to select the appropriate hardware 

to implement our algorithm is a problem needs to be 

considered.    

 

5. Conclusion  

  Training convolution neural networks require high 

computing and large memory usage that is hard to 

implement in low performance device. We propose a 

general algorithm to reduce memory usage training neural 

networks by put input activation of each layers into CPU 

memory with using more GPU stream to parallel 

computing and data transfer. The result show that without 

much affecting speed of training, memory usage can be 

dramatically reduced. 
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Fig. 6: GPU stream timeline of training MobileNet with batch size 128 

Stream1：
Stream2：
Stream3：

Forward pass Backward pass

Data transfer from GPU to CPU Data transfer from CPU to GPU

Table. 3: Result of time increasing using our algorithm training neural networks 

Batch Size  16 32 64 128 256 

VGG 

 

CPU 

multithreading 
1.19x 1.23x 1.18x - - 

GPU stream 1.01x 1.01x 1.04x - - 

AlexNet 

 

CPU 

multithreading 
1.17x 1.25x 1.20x 1.25x 1.26x 

GPU stream 1.0x 1.0x 1.02x 1.03x 1.06x 

MobileNet 

 

CPU 

multithreading 
1.41x 1.46x 1.35x 1.32x - 

GPU stream 1.21x 1.19x 1.18x 1.14x - 

 


