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SUMMARY This paper describes a hands-free speech recog-
nition technique based on acoustic model adaptation to rever-
berant speech. In hands-free speech recognition, the recogni-
tion accuracy is degraded by reverberation, since each segment
of speech is affected by the reflection energy of the preceding
segment. To compensate for the reflection signal we introduce
a frame-by-frame adaptation method adding the reflection sig-
nal to the means of the acoustic model. The reflection signal is
approximated by a first-order linear prediction from the obser-
vation signal at the preceding frame, and the linear prediction
coefficient is estimated with a maximum likelihood method by
using the EM algorithm, which maximizes the likelihood of the
adaptation data. Its effectiveness is confirmed by word recogni-
tion experiments on reverberant speech.
key words: acoustic model, reverberant speech, adaptation,
hands-free speech recognition

1. Introduction

In hands-free speech recognition, one of the key issues
for practical use is the development of technologies that
allow accurate recognition of reverberant speech. Cur-
rent speech recognition systems are capable of achiev-
ing impressive performance in clean acoustic environ-
ments. However, if the user speaks at a distance from
the microphone, the recognition accuracy is seriously
degraded by the influence of reverberation.

Convolution distortion is usually caused by a tele-
phone channel, microphone characteristics, reverbera-
tion, and so on. Its effect on the input speech appears
as a convolution in the wave domain and is represented
as a multiplication in the linear-spectral domain. Con-
ventional normalization techniques, such as CMS (Cep-
stral Mean Subtraction) and RASTA, have been pro-
posed and their effectiveness has been confirmed for
a telephone channel or microphone [1][2][3] that has
short impulse responses. When the length of the im-
pulse response is shorter than the analysis window used
for the spectral analysis of speech, those methods are
effective. However, as the length of the impulse re-
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sponse for the room reverberation becomes longer than
the analysis window, the performance degrades. This
is because each segment of speech is affected by the re-
flection energy of the preceding segment in reverberant
environments. To reduce the effect of the reverberation,
microphone array techniques were proposed [4][5][6][7].
Array processing can offer the additional advantage of
spatial processing, but microphone arrays may not be
suitable in some cases because of their size and cost.

One scheme for removing the effect of the rever-
beration is to pass the distorted speech through a filter
which exactly inverts the effect of the reverberation.
But it is not easy to find the exact inverse filter (for
example, see [8]). In [4][5], the dereverberation is real-
ized using the microphone array based on some kind of
inverse filtering techniques.

Techniques without microphone arrays were also
proposed, e.g. [9][10][11]. If the analysis window is long
relative to the length of the reverberation, the effect of
the reverberation can be considered as only multipli-
cation in the frequency domain [9]. Therefore, using
the long time window, the conventional normalization
techniques, such as CMS and RASTA, may reduce re-
verberation effects [9]. However, the problem is that
such a technique will reduce the discrimination of the
speech features.

In [10], the reverberation time is estimated, and
then the reverberated acoustic model with the closest
reverberation time is selected out of a library of off-
line trained reverberated acoustic models. Therefore if
the mismatch of the reverberation factor between the
library (database) and real test environments is large,
the performance will degrade.

In [11], a new dereverberation method has been
proposed. This technique transforms the reverberant
signal to its direct signal based on an inverse filtering
operation. This is able to effectively reduce the rever-
beration factor, but the operation requires many rever-
berant speech signals. It may not be practical to collect
a large set of utterances over every environment. There-
fore we propose a model adaptation method based on
the conventional short-time analysis window, where a
small amount of a user’s reverberant speech is used.

This paper describes a model adaptation technique
for reverberant speech recognition. The new technique
is based on HMM composition [12] using a first-order
linear prediction. In reverberant environments, the
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speech signal is affected by the reflection energy of the
preceding segment. As the model adaptation in [12] was
not able to deal with the reflection signal, the recogni-
tion performance was not sufficiently improved. In this
paper, to compensate for the reflection signal, we intro-
duce a frame-by-frame adaptation method adding the
reflection signal to the means of the acoustic model.

In this paper, we approximate the reflection signal
of the reverberant speech by the linear prediction from
the observation signal at the preceding frame. Adding
the reflection signal to the means of the acoustic model,
a frame-by-frame adaptation is implemented for rever-
berant speech. Furthermore, this paper also describes
a technique to estimate the linear prediction coefficient.
This method estimates the parameters of the reverbera-
tion to maximize the likelihood of the adaptation data.

2. HMM adaptation to reverberant speech

The observed signal is generally considered as the ad-
dition of the direct signal and the reflection signal:

O(ω;n) ≈ S(ω; n) ·H0(ω) +
∑

d=1

S(ω; n− d) ·Hd(ω)

=
∑

d=0

S(ω;n− d)Hd(ω) (1)

where O(ω;n) and S(ω; n) are the linear spectrum for
the observed signal and the clean speech of the fre-
quency ω at the n-th frame. H(ω) is the reverberation
factor. The reflection signal is represented by the sum-
mation over the time delay which may be longer than a
phoneme interval. This is because the reflection signal
can be seen as the overlapping segment from the pre-
vious segment. Figure 1 and 2 show clean speech and
reverberant speech, respectively. As can be seen from
these figures, each segment of reverberant speech is af-
fected by the reflection energy of the preceding segment,
and the reflection signal will be viewed as additive noise
from the preceding segment of speech.

In this paper, we consider the reflection signal of
the reverberant speech as additive noise and approx-
imate it by a linear prediction from the observation
signal at the preceding frame. The observed signal is
therefore represented by

O(ω;n) ≈ S(ω;n) ·H(ω) + α(ω) ·O(ω; n− 1) (2)

where

α(ω) ·O(ω; n− 1) =
∑

d=1

S(ω; n− d) ·Hd(ω) (3)

where α(ω) is the linear prediction coefficient for the
frequency ω. The observation signal O(ω;n − 1) in-
cludes all reflection signals. But it includes also the
direct signal. Therefore we approximate the reflection
signal by a first-order linear prediction from the ob-
servation signal at the preceding frame, O(ω;n − 1).

Fig. 1 Original speech: the speech waveform and spectrogram
of the Japanese utterance /aite/.

Fig. 2 Reverberant speech (reverberation time = 0.47 sec):
the speech waveform and spectrogram of the Japanese utterance
/aite/.
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Fig. 3 Frame-by-frame adaptation using a first-order linear
prediction

Adding the reflection signal to the means of the acous-
tic model, a frame-by-frame adaptation is implemented
for reverberant speech which has the longer impulse re-
sponse than the analysis window.

As shown in (2), the reverberation factor is ap-
proximated by the addition of the influence within the
frame and outside of the frame. Here the former is
the spectral distortion within each frame, H(ω), and
the latter is the reflection signal which is approximated
by a first-order linear prediction from the observation
signal at the preceding frame.

Using (2), the composite HMM for reverberant
speech is computed. The procedure is as follows (Figure
3).
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1) Compose HMMs of the clean speech and spectral
distortion within each frame in the cepstral do-
main.

µ(SH)
cep = µ(S)

cep + µ(H)
cep , Σ (SH)

cep = Σ (S)
cep + Σ (H)

cep (4)

Here the subscript cep represents the cepstral do-
main, (µ(S), Σ (S)) is the mean vector and covari-
ance matrix of the clean speech HMM, and (H)
means the spectral distortion within each frame.
In this paper, Σ (H)

cep is set to zero.
2) Transform (µ(SH)

cep , Σ (SH)
cep ) from the cepstral do-

main to the linear-spectral domain.

2.1) Compute the inverse cosine transform of each
Gaussian probability density function (PDF)
of the HMM’s.

µ
(SH)
log = Γ−1µ(SH)

cep , Σ (SH)
log = (Γ−1)T Σ (SH)

cep Γ−1(5)

Here, Γ is a cosine transform matrix, µ
(SH)
log ,

and Σ (SH)
log are the mean vector and covariance

matrix of a Gaussian PDF in the log-power
spectral domain. The transposition is denoted
by “T”.

2.2) Compute the exponential transform to the
linear-spectral domain. The normal ran-
dom vector obtained by exponential trans-
form, Z = exp(Y ), has log-normal distribu-
tion. The mean and covariance are given by

µ
(SH)
lin,i = exp

{
µ

(SH)
log,i +

σ
(SH)
log,ii

2

}
(6)

σ
(SH)
lin,ij = µ

(SH)
lin,i · µ(SH)

lin,j · exp
{

σ
(SH)
log,ij − 1

}
(7)

Here, µ
(SH)
lin,i and σ

(SH)
lin,ij are the i-th mean and

the (i, j) element of the covariance matrix in
the linear-spectral domain.

3) Frame-by-frame adaptation to the reverberant
speech using the preceding frame. Add the reflec-
tion signal estimated by the linear prediction from
the observation signal at the preceding frame to
the means of the acoustic model.

µ̂
(O)
lin = µ

(SH)
lin + α ·Olin(n− 1) (8)

σ̂
(O)
lin,ij = σ

(SH)
lin,ij (9)

4) Transform (µ̂(O)
lin , Σ̂ (O)

lin ) from the linear-spectral
domain to the cepstral domain.

4.1) Compute the log transform.

µ̂
(O)
log,i = log µ̂

(O)
lin,i −

1
2

{
σ̂

(O)
lin,ii

µ̂
(O)
lin,i · µ̂(O)

lin,i

+ 1

}
(10)

σ̂
(O)
log,ij = log

{
σ̂

(O)
lin,ij

µ̂
(O)
lin,i · µ̂(O)

lin,j

+ 1

}
(11)

4.2) Compute the cosine transform to the cepstral
domain.

µ̂(O)
cep = Γµ̂

(O)
log , Σ̂ (O)

cep = ΓT Σ̂ (O)
log Γ (12)

Given the composite HMM for the reverberant speech,
a speech recognition system estimates the word string
associated with the test waveform.

In (2), the reflection signal is approximated by a
first-order linear prediction from the observation sig-
nal at the preceding frame. We next consider about
this approximation. From (1), the following equation
is obtained:

O(ω; n− 1) ≈
∑

d=0

S(ω;n− 1− d) ·Hd(ω)

α(ω) ·O(ω; n−1) ≈
∑

d=0

S(ω; n−1−d) ·α(ω) ·Hd(ω) (13)

Comparison of the above equation with (3), the follow-
ing equation is finally obtained:

H1 = αH0

H2 = αH1 = ααH0

H3 = αH2 = αααH0

· · ·
Thus in the proposed method the effect of the reverber-
ation decreases according to the product of α, as the
time delay increases.

This section has only described how to adapt the
acoustic model to reverberant speech. Therefore esti-
mation of the reverberant parameters remains a serious
problem. The next section describes how to estimate
the linear prediction coefficient.

3. Estimation of reverberant parameters

Estimations of the spectral distortion within each frame

Adaptation data

Estimation of the spectral distortion
within each frame 

),|Pr(maxargˆ
SHH O λλλ =

Hλ

(Iteration)

Estimation of the linear prediction
coefficient

),ˆ,|Pr(maxargˆ SHO λλαα =
α

(Iteration)

Fig. 4 Estimation of reverberant parameters using EM algo-
rithm
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and the linear prediction coefficient are performed by
maximizing the likelihood of the adaptation data. First
the spectral distortion is estimated using HMM separa-
tion [12] in the cepstral domain, where α is set to zero.
Then the linear prediction coefficient is estimated in
the linear-spectral domain. The steps to estimate the
reverberant parameters are as follows (Figure 4):

1) Estimate the spectral distortion using the
HMM separation [12] based on the Expectation-
Maximization (EM) in the cepstral domain.

λ̂H = argmax
λH

Pr(O|λH , λS) (14)

Here λ denotes the set of HMM parameters. In this
paper, we apply the HMM separation to only the
mean vector. The re-estimation formula for λ̂H is
given by

µ̂(H) =

∑P

p

∑Wp

v

∑
j

∑
k

∑Np,v

n
γp,v,j,k,n

Op,v,n−µ
(S)
p,j,k

Σ
(S)
p,j,k∑

p

∑
j

∑
k

γp,j,k

Σ
(S)
p,j,k

=

∑
p

∑
j

∑
k γp,j,k

µ
(O′)
p,j,k

−µ
(S)
p,j,k

Σ
(S)
p,j,k∑

p

∑
j

∑
k

γp,j,k

Σ
(S)
p,j,k

(15)

µ
(O′)
p,j,k =

∑
v

∑
n

γp,v,j,k,nOp,v,n∑
v

∑
n

γp,v,j,k,n
(16)

γp,v,j,k,n = Pr(Op,v,n, j, k|λH , λS) (17)

where µ
(S)
p,j,k and Σ (S)

p,j,k are the means and variances
corresponding to a phoneme p, state j, and mixture
k in the model λS . Each phoneme consists of Wp

adaptation data, and
∑

v Np,v is the total number
of training frames for the phoneme p. Op,v,n is the
n-th observation sequence in the v-th adaptation
data for a phoneme p.

2) Compose the HMMs of the clean speech, λS , and
the spectral distortion, λ̂H , in the cepstral domain
according to (4).

3) Transform (µ̂(SH)
cep , Σ̂ (SH)

cep ) from the cepstral do-
main to the linear-spectral domain.

4) Estimate the linear prediction coefficient.

α̂ = argmax
α

Pr(O|α, λ̂H , λS)

= argmax
α

Pr(O|α, λ̂SH) (18)

The estimation of the linear prediction coefficient is per-
formed in a maximum likelihood fashion by using the
Expectation-Maximization (EM) algorithm. The EM
algorithm is a two-step iterative procedure. In the first
step, called the expectation step, the following auxiliary

function is computed.

Q(α̂|α)

= E[log Pr(O, b, c|α̂, λ̂SH)|α, λ̂SH ]

=
∑

p

∑
v

∑

bp,v

∑
cp,v

Pr(Op,v, bp,v, cp,v|α, λ̂SH)

Pr(Op,v|α, λ̂SH)

· log Pr(Op,v, bp,v, cp,v|α̂, λ̂SH) (19)

Here b and c are the unobserved state sequence and the
unobserved mixture component labels corresponding to
the observation sequence O.

The joint probability of observing the sequences O,
b, and c can be calculated as

Pr(O, b, c|α̂, λ̂SH)

=
∏
n

abn−1,bn
wbn,cn

Pr(On|α̂, λ̂SH) (20)

where a is the transition probability, and w is the mix-
ture weight. Since we consider reflection signal of the
reverberant speech as additive noise and approximate
it by a linear prediction from the preceding frame, the
mean to mixture k in the model λO is derived by adding
the reflection signal estimated by linear prediction from
the observation signal at the preceding frame to the
mean of the acoustic model λ̂SH . Therefore, (20) can
be written as

Pr(O, b, c|α̂, λ̂SH)

=
∏
n

abn−1,bnwbn,cn ·N(O; µ̂(SH)
p,j,kn

+ α̂On−1, Σ̂
(SH)
p,j,kn

)(21)

where N(O; µ,Σ ) denotes the multivariate Gaussian
distribution. It is straightforward to derive that [13]

Q(α̂|α)

=
∑

p

∑
v

∑

i

∑

j

∑
n

Pr(Op,v, bp,v,n = j, bp,v,n−1 = i|λ̂SH) log ap,i,j

+
∑

p

∑
v

∑

j

∑

k

∑
n

Pr(Op,v, bp,v,n = j, cp,v,n = k|λ̂SH) log wp,j,k

+
∑

p

∑
v

∑

j

∑

k

∑
n

Pr(Op,v, bp,v,n = j, cp,v,n = k|λ̂SH)

· log N(Op,v,n; µ̂(SH)
p,j,k + α̂On−1, Σ̂

(SH)
p,j,k ) (22)

Here we focus only on the term involving (θ̂ = {α̂}).
Qθ̂(α̂|α)

=
∑

p

∑
v

∑

j

∑

k

∑
n

Pr(Op,v, bp,v,n = j, cp,v,n = k|λ̂SH)

· log N(Op,v,n; µ̂(SH)
p,j,k + α̂Op,v,n−1, Σ̂

(SH)
p,j,k )
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Fig. 5 Impulse response (Reverberation time: 300 msec) which
is measured using the TSP (Time-Stretched Pulse) method. Re-
verberant speech is simulated by a linear convolution of clean
speech and impulse responses.

= −∑
p

∑
v

∑
j

∑
k

∑
n γp,v,j,k,n ·

[
1
2 log(2π)DΣ̂ (SH)

p,j,k

+
{Op,v,n−µ̂

(SH)
p,j,k

−α̂·Op,v,n−1}T{Op,v,n−µ̂
(SH)
p,j,k

−α̂·Op,v,n−1}
2Σ̂

(SH)
p,j,k

]
(23)

Here D is the dimension of the adaptation vector Op,v,n.
In this work, we assume that the alignment for the
adaptation data in the linear-spectral domain is the
same as that in the cepstral domain. Therefore the
probability, γ, of being in state j and mixture k at
frame n is computed in the cepstral domain.

The maximization step (M-step) in the EM algo-
rithm becomes “max Qθ̂(α̂|α)”. The re-estimation for-
mula can be therefore derived from knowing that ∂Q(α̂|
α)/∂α̂ = 0 as

α̂ =

∑
p

∑
v

∑
j

∑
k

∑
n
γp,v,j,k,n

Op,v,n−1{Op,v,n−µ̂
(SH)
p,j,k

}
Σ̂

(SH)
p,j,k∑

p

∑
v

∑
j

∑
k

∑
n γp,v,j,k,n

O2
p,v,n−1

Σ̂
(SH)
p,j,k

.(24)

4. Experiments

4.1 Experimental conditions

The new adaptation technique was evaluated on
distant-talking speech recognition tasks. Reverberant
speech was simulated by a linear convolution of clean
speech and impulse responses. The impulse responses
were taken from the RWCP sound scene database
[14][15]. The reverberation time was 300 msec (Fig-
ure 5). The distance to the microphone was about 2
m. The size of the recording room was about 6.7 m
× 4.2 m (width × depth). The speech signal was sam-
pled at 12 kHz and windowed with a 32-msec Hamming
window every 8 msec. Then FFT is used to compute
16-order MFCCs (mel-frequency cepstral coefficients)
and the power. In recognition, the power term is not
used, because it is only necessary to adjust the power
of the clean speech model in (8).

The models of 55 context-independent phonemes
were trained by using 2,620 words in the ATR Japanese

Table 1 Word-recognition rates for reverberant speech

method CMS model adap. matched
spectral distortion

compensation
© © © -

additive reflection
compensation

× × © -

speaker1 78.5% 80.3% 88.8% 94.2%
speaker2 88.1% 90.1% 91.1% 96.2%
speaker3 73.3% 79.8% 85.4% 93.9%

average 80.0% 83.4% 88.4% 94.8%

speech database for the speaker-dependent HMM. Each
HMM has three states and three self-loops, and each
state has four Gaussian mixture components. The tests
were carried out on 1000-word recognition tasks, and
three males spoke the 1000 words. Each test speaker ut-
tered 10 words as adaptation data, different from those
used in the training and testing.

To evaluate the proposed method for the mismatch
between the adaptation and testing positions and com-
pare it with the inverse filtering method, we used four
impulse responses. Figure 7 shows the mismatch con-
ditions. We used the measured impulse response to
calculate the inverse filter.

4.2 Experimental results

Table 1 shows the recognition rates for reverberant
speech. In the CMS-based testing case, the phoneme
HMMs are trained by using the CMS-processed clean-
speech data. Subtraction of each cepstral mean value
from each set of test data gives an average recognition
rate of 80.0%. The result clearly shows that the simple
CMS technique does not work well. As can be seen from
this table, the use of the model adaptation achieves
good performance, comparable with that of CMS in the
reverberant environment. The use of the model adapta-
tion without the additive reflection compensation using
only (4) improved the recognition rate to 83.4%, and
a further improvement was also obtained by the adap-
tation with additive reflection compensation using (8).
However, comparing the result of the model adaptation
with that of the matched model which was trained by
using reverberant speech (2,620 words) shows degrada-
tion in performance.

Figure 6 shows the convergence properties of the
model adaptation. In this figure, the log-likelihood ver-
sus the number of iterations in the EM algorithm is
plotted. As can be seen from Figure 6, the EM algo-
rithm converges within several iterations.

Figure 10 shows a comparison of the performance
of the model adaptation and the inverse filtering. The
inverse filtering requires the measurement of the im-
pulse response from the position of the sound source to
the microphone, and its inverse is used to dereverberate
the speech signal according to
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Fig. 9 Power-spectrum of impulse response.

Ŝ(ω) = F [o(t)]/F [w(t)] (25)

ŝ(t) = F−1[Ŝ(ω)] (26)

where w(t) is the measured impulse response, F [∗] is
the one-time Fourier transform, and Ŝ(ω) is the com-
plex spectrum of the estimated clean speech. In this
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40

60

80

100

model adaptation
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Fig. 10 Comparison of the performance of model adaptation
and inverse filtering

experiment, from ŝ(t), 16-order MFCCs are computed.
Figure 7 shows the experimental condition for the in-
verse filtering, where the microphone position for the
adaptation data and the inverse filtering is changed,
and that for the testing data is fixed (The position
of the test speaker is also fixed). Figure 8 and 9
show the estimated linear prediction coefficient and the
power-spectrum of the impulse responses in the “no-
mismatch” case and the “mismatch-distance = 22.64
cm” case. The differences shown may cause degrada-
tion of speech recognition.

As shown in Figure 10, the performance of both ap-
proach with no mismatch between the adaptation and
testing positions is very good. As the mismatch of the
positions becomes large, the performance of the inverse
filtering is decreased. For the model adaptation the per-
formance is not decreased. The result shows that the
model adaptation is a robust technology to the mis-
match between the adaptation and testing positions.

5. Summary

This paper has described an acoustic model adaptation
technique for reverberant speech recognition. In this
paper, we assume that the influence of the reverbera-
tion contributes as the spectral distortion within each
frame and as additive noise, which is approximated by a
first-order linear prediction from the observation signal
at the preceding frame. The linear prediction coeffi-
cient is estimated using the EM algorithm from a small
amount of a user’s speech. Adding the reflection signal
to the means of the acoustic model, a frame-by-frame
adaptation is implemented for reverberant speech. The
new adaptation technique was evaluated on distant-
talking speech recognition tasks. The experimental re-
sults show that the use of the model adaptation achieves
good performance in comparison to that of CMS, and
the model adaptation is robust to the mismatch be-
tween the adaptation and testing positions in compar-
ison with the inverse filtering approach.
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